锂离子电池自放电.docx

上传人:b****5 文档编号:6222191 上传时间:2023-01-04 格式:DOCX 页数:13 大小:25.80KB
下载 相关 举报
锂离子电池自放电.docx_第1页
第1页 / 共13页
锂离子电池自放电.docx_第2页
第2页 / 共13页
锂离子电池自放电.docx_第3页
第3页 / 共13页
锂离子电池自放电.docx_第4页
第4页 / 共13页
锂离子电池自放电.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

锂离子电池自放电.docx

《锂离子电池自放电.docx》由会员分享,可在线阅读,更多相关《锂离子电池自放电.docx(13页珍藏版)》请在冰豆网上搜索。

锂离子电池自放电.docx

锂离子电池自放电

锂离子电池自放电

自放电的一致性是影响因素的一个重要部分,自放电不一致的电池在一段时间储存之后SOC会发生较大的差异,会极大地影响它的容量和安全性。

对其进行研究,有助于提高我们的电池组的整体水平,获得更高的寿命,降低产品的不良率。

含一定电量的电池,在某一温度下,在保存一段时间后,会损失一部分容量,这就是自放电。

简单理解,自放电就是电池在没有使用的情况下容量损失,如负极的电量自己回到正极或是电池的电量通过副反应反应掉了。

 

自放电的重要性

目前锂电池在类似于笔记本,数码相机,数码摄像机等各种数码设备中的使用越来越广泛,另外,在汽车,移动基站,储能电站等当中也有广阔的前景。

在这种情况下,电池的使用不再像手机中那样单独出现,而更多是以串联或并联的电池组的形式出现。

电池组的容量和寿命不仅与每一个单个电池有关,更与每个电池之间的一致性有关。

不好的一致性将会极大拖累电池组的表现。

自放电的一致性是影响因素的一个重要部分,自放电不一致的电池在一段时间储存之后SOC会发生较大的差异,会极大地影响它的容量和安全性。

对其进行研究,有助于提高我们的电池组的整体水平,获得更高的寿命,降低产品的不良率。

自放电机理

锂钴石墨电池电极反应如下:

 

电池开路时,不发生以上反应,但电量依然会降低,这主要是由于电池自放电所造成。

造成自放电的原因主要有:

a.电解液局部电子传导或其它内部短路引起的内部电子泄露。

b.由于电池密封圈或垫圈的绝缘性不佳或外部铅壳之间的电阻不够大(外部导体,湿度)而引起的外部电子泄露。

c.电极/电解液的反应,如阳极的腐蚀或阴极由于电解液、杂质而被还原。

d.电极活性材料局部分解。

e.由于分解产物(不溶物及被吸附的气体)而使电极钝化。

f.电极机械磨损或与集流体间电阻变大。

自放电的影响

1、自放电导致储存过程容量下降

几个典型的自放电过大造成的问题:

1、汽车停车时间过久,启动不了;

2、电池入库前电压等一切正常,待出货时发现低电压甚至零电压;

3、夏天车载GPS放在车上,过段时间使用感觉电量或使用时间明显不足,甚至伴随电池发鼓。

2、金属杂质类型自放电导致隔膜孔径堵塞,甚至刺穿隔膜造成局部短路,危及电池安全

 

3、自放电导致电池间SOC差异加大,电池组容量下降

由于电池的自放电不一致,导致电池组内电池在储存后SOC产生差异,电池性能下降。

客户在拿到储存过一段时间的电池组之后经常能够发现性能下降的问题,当SOC差异达到20%左右的时候,组合电池的容量就只剩余60%~70%。

 

4、SOC差异较大容易导致电池的过充过放

 

一、化学&物理自放电的区分

1、高温自放电与常温自放电对比

物理微短路与时间关系明显,长时间的储存对于物理自放电的挑选更有效;而高温下化学自放电则更显著,应用高温储存来挑选。

 

按照高温5D,常温14D的方式储存:

如果电池自放电以物理自放电为主,则常温自放电/高温自放电≈2.8;如果电池自放电以化学自放电为主,则常温自放电/高温自放电<2.8。

2、循环前后的自放电对比

循环会造成电池内部微短路熔融,从而使物理自放电降低,所以:

如果电池自放电以物理自放电为主,则循环后的自放电降低明显;如果电池自放电以化学自放电为主,则循环后的自放电无明显变化。

 

3、液氮下测试漏电流

在液氮下使用高压测试仪测量电池漏电流,如有以下情况,则说明微短路严重,物理自放电大:

1)某一电压下,漏电流偏大;

2)不同电压下,漏电流之比与电压之比相差大。

 

4、隔膜黑点分析

通过观察和测量隔膜黑点的数量、形貌、大小、元素成分等,来判断电池物理自放电的大小及其可能的原因:

1)一般情况下,物理自放电越大,黑点的数量越多,形貌越深(特别是会穿透到隔膜另一面);2)依据黑点的金属元素成分判断电池中可能含有的金属杂质。

 

5、不同SOC的自放电对比

不同SOC状态下,物理自放电的贡献会有差异。

通过实验验证,100%SOC下更容易分辨物理自放电异常的电池。

 

二、自放电测试

1、自放电检测方法

1)电压降法

用储存过程中电压降低的速率来表征自放电的大小。

该方法操作简单,缺点是电压降并不能直观地反映容量的损失。

电压降法最简单实用,是当前生产普遍采用的方法。

2)容量衰减法

即单位时间内容量降低的百分数来表示。

3)自放电电流法Isd

根据容量损失和时间的关系推算电池储存过程中的自放电电流Isd。

4)副反应消耗的Li+摩尔数计算法

基于电池储存过程Li+消耗速率受负极SEI膜电子电导的影响,推导算Li+消耗量随储存时间的关系。

2、自放电测量系统关键点

 

1)选取合适的SOC

dOCV/dT受SOC影响,温度对OCV的影响在平台处被显著放大,带来很大的SOC预测误差。

需选择对温度变化相对不敏感的SOC测试自放电,如:

FC1865:

25%SOC测自放电;LC1865:

50%SOC测自放电。

 

因电池容量差异,故实际电池的SOC存在波动,公差约为4%左右,故考察5%的公差范围内OCV曲线斜率的变化。

LC186553%和99.9%SOC处斜率很稳定,分别为3.8mV/%SOC和10mV/%SOC。

FC1865~25%SOC处斜率比较稳定;当然满电态也是个简单实用的自放电测量点。

 

2)起始时间的选定

FC186525%SOC下(也可以是其他SOC值)看充电结束后每小时电压变化,20h以后电压降速率基本一致,可以认为极化已基本恢复。

故选取24h作为自放电测试起始时间。

 

LC186550%SOC下14h以后电压变化速率在0.01mV/h上下小范围波动,可以认为极化已基本恢复,选取24h作为自放电起始点是可行的。

 

3)储存温度和时间

储存温度和时间对自放电的影响(LC1865H)

 

在研究区间内,自放电与时间和温度均呈显著的线性关系。

可将自放电模型拟合为:

自放电=0.23*t+0.39*(T-25)。

(以上数值和关系式和电池体系有关,常量会相应变化,以下其他关系也是。

常温下由于化学反应速率的降低,其物理自放电的异常点表现更明显。

14D储存能够非常好的预测28D的结果。

 

3、自放电测量系统的改进

1)测电压温度

测电压环境温度对自放电的影响:

FC1865:

每增加1℃,电压下降0.05mV;LC1865:

每增加1℃,电压下降0.17mV。

 

2)电压表选型

在电压表的选择上,由于自放电研究的是0.1mV层面的变化,传统的4位半电压表(精确到1mV,分辨率到0.1mV)已不适合,故选用六位半Agilent34401A电压表,(精确达到0.1mV,分辨率达到0.01mV甚至更高)。

另外该量仪的重复性也相当不错。

 

4、自放电标准的确定

1)理论推算

 

2)1mV差异模拟

通过人为调整10%SOC差异模拟1mV(28天1mv,14天0.5mv的差异)自放电差异使用3年后的Balance结果。

3组电池均未发生过充的安全问题,但是放电时的电压差已经非常大(1200mV),自放电大的电池被过放至2.5V,PACK容量损失10%。

自放电影响因素及控制要点

一、原材料金属杂质

1、金属杂质的影响机理

电池中:

金属杂质发生化学和电化学腐蚀反应,溶解到电解液:

M→Mn++ne-;此后,Mn+迁移到负极,并发生金属沉积:

Mn++ne-→M;随着时间的增加,金属枝晶在不断生长,最后穿透隔膜,导致正负极的微短路,不断消耗电量,导致电压降低。

 

注:

以上只是最常见的形式,还可能有很多其他的影响机理。

2、不同种类金属屑影响程度

(1)正极浆料中添加不同种类金属屑

可定性的对影响程度排序:

Cu>Zn>Fe>Fe2O3

 

注:

原则上,只要是金属杂质(如以上未列出的还有FeS\FeP2O7…),都会对自放电产生较大影响,影响程度一般是金属单质最强。

金属屑电池的隔膜黑点形貌深(穿透到另一面)、数量多:

 

隔膜黑点的金属元素成分与添加的金属种类相吻合,说明隔膜黑点上的金属元素确实来源于金属杂质:

 

(2)负极浆料中添加不同种类金属屑

负极浆料中金属杂质的影响不及正极浆料中的金属杂质;其中,Cu、Zn对自放电有显著影响;Fe、氧化铁未观察到显著影响。

 

3、金属杂质关键控制

(1)建立磁性金属杂质的测试方法

 

①用电子称称量粉末后,投入到聚四氟乙烯球磨罐中

②将已准备好的磁铁投入粉末,放超纯水

③球磨机以200±5rpm的速度搅拌30±10分钟

④搅拌完毕后,取出内部的磁铁(避免用手或其他器具直接接触

⑤磁铁表面吸的正极活性物质,用超纯水来洗净后,利用超声波来洗净15±3秒钟。

⑥ ⑤项的手法反复进行多次——磷酸铁锂:

20遍;其它物料:

5-8遍

⑦洗净好的磁铁转移到100ml烧杯里。

(防止异物的混入)

⑧在烧杯里,倒稀王水(盐酸:

硝酸=3:

1)6ml后,再加入磁铁沉浸程度的超纯水。

然后加热20分钟左右

⑨将加热好的溶液转移到100ml容量瓶里,至少润洗3次,并把润洗液也转移到容量瓶中,最后用超纯水定容

⑩准备好的溶液,送AAS进行定量分析铁,铬,铜,锌,镍,钴的含量(磷酸铁锂再加测一个锂元素)。

测量原材料的磁性金属杂质含量:

 

磷酸铁锂:

 

杂质成分包含Fe、Cr、Ni、Al、P等,杂质金属应该为不锈钢。

KS6:

磁性金属杂质主要成分是Al,还有少量Mg。

(2)对金属杂质含量过高的原材料进行除铁

 

(3)原材料除铁对自放电的改善

 

二、制程粉尘金属屑

1、制程中粉尘金属屑的潜在来源

 

2、采取措施减少和消除粉尘金属屑

 

3、实例

使用自动卷绕机后,极片掉料显著改善:

 

使用自动卷绕机后,极芯短路率显著降低:

 

自动卷绕机对自放电的改善:

 

整个车间和产线的非金属化、5S行动:

 

三、电池水分

 

1、水分对自放电的影响机理

 

如上图,当电池中有H2O存在时,首先,其会与LiPF6反应,生产HF等腐蚀性气体;同时与溶剂等反应产生CO2等气体引起电池膨胀;HF会与电池中众多物质如SEI主要成分反应,破坏SEI膜;生成CO2和H2O等;CO2引起电池膨胀,重新生成的H2O又参与LiPF6、溶剂等反应;形成恶性链式反应!

SEI膜破坏的后果:

1)、溶剂进入石墨层中与LixC6反应,引起不可逆容量损失;

2)、破坏的SEI修复则要消耗Li+和溶剂等,进一步造成不可逆容量损失。

2、水分测量

固体水分测量方法的改进:

 

原有甲醇浸泡的测量方法的重复性和再现性都较差;并且测试周期长(浸泡24h),不可能用于在线控制。

 

改用卡氏加热炉+水分测定仪,准确性和精确性提高,MSA通过;测试时间约5分钟,适合用于在线监控。

3、水分控制

(1)优化极芯烘烤工艺,提高除水效果

 

(2)开发小卷烘烤工艺,提升除水效果

 

(3)建设自动装配线,减少极芯吸水

 

(4)控制电池注液过程中吸水

 

(5)优化制作流程,减少在制品积压

 

四、改善效果

 

1、电压趋于稳定

 

2、自放电不良率降

 

3、自放电趋势逐步稳定

 

4、自放电均值和中位数降低

 

锂电池对正极材料的要求

正极活性物质是锂离子电池最为关键的核心材料。

1前言:

锂电池正极材料

锂离子电池的主要部件有正极、负极、电解液、隔膜等,锂离子能量的存储和释放是以电极材料的氧化还原反应形式实现的,正极活性物质是锂离子电池最为关键的核心材料。

在锂离子电池正极材料的研究方面,美国学者“锂电池之父”GOODENOUGH教授作出了巨大贡献:

1980年在英国牛津大学就职期间发现了钴酸锂(LiCoO2,简称LCO)可用作锂电正极,次年他在LCO专利中提及镍酸锂(LiNiO2,也称LNO)作为正极材料的可行性;1983年,首次尝试将锰酸锂(LiMn2O4,简称LMO)作为正极材料用于锂离子电池;1997年,他又开发出橄榄石结构正极材料——磷酸铁锂(LiFePO4,简称LFP)。

此外,为了解决镍酸锂性能不稳定问题,加拿大的DAHN教授和日本小槻勉教授进行了大量的掺杂改性研究;1997年,日本户田公司率先申请了最早的镍钴铝酸锂(LiNi1-x-yCoxAlyO2,简称NCA)专利;1999年,新加坡大学的刘昭林、余爱水等人在镍钴酸锂基础上引入Mn改性,最早报导了镍钴锰酸锂(LiNi1-x-yCoxMnyO2,即三元材料、NCM)。

经过近三十年的快速发展,基于上述科学家的研究成果,钴酸锂、锰酸锂、镍钴酸锂(LiNi1-xCoxO2,也称NC)、镍钴锰酸锂、镍钴铝酸锂、磷酸铁锂等正极材料陆续产业化,并被拓展用于众多领域。

随着新能源汽车对高能量密度正极材料的需求,目前镍钴锰酸锂三元材料已经成为最重要、占比最大的正极材料(图1)。

近20年来,国产的正极材料已走出国门,部分产品处于世界领先地位,涌现了当升科技、天津巴莫、湖南瑞翔、盟固利等先进电池材料公司。

 

2锂电池正极材料产品标准技术规范

2.1锂离子电池对正极材料的要求

正极是电池的核心部件,其优劣直接影响电池性能。

一般而言对正极活性物质有如下要求:

 

·允许大量Li+嵌入脱出(比容量大);

·具有较高的氧化还原电位(电压高);

·嵌入脱出可逆性好,结构变化小(循环寿命长);

·锂离子扩散系数和电子导电性高(低温、倍率特性好);

·化学/热稳定性高,与电解液相容性好(安全性好);

·资源丰富,环境友好,价格便宜(成本低、环保)。

 

一般而言,正极材料的关键性能指标有:

化学成分、晶体结构、粒度分布、振实密度、比表面积、pH值、首次放电比容量、首次充放电效率、循环寿命等。

 

2.2正极材料的主元素含量 

锂离子电池中的正极材料都是含锂的氧化物,一般锂含量越高,容量越高。

比如锰酸锂的Li含量仅为4.2%,而钴酸锂和镍酸锂达到约7.1%,富锂锰基的则可高达约10%。

材料组成固定的话,主元素含量应该以实际测试平均值加公差的形式给出,以达到相应的电化学活性并保持批次之间的稳定性。

锂离子电池中的正极材料都是含锂的氧化物,一般锂含量越高,容量越高。

比如锰酸锂的Li含量仅为4.2%,而钴酸锂和镍酸锂达到约7.1%,富锂锰基的则高达约10%。

材料组成固定的话,主元素含量应该以实际测试平均值加公差的形式给出,以达到相应的电化学活性并保持批次之间的稳定性。

 

2.3正极材料的晶体结构

锂离子电池正极材料的晶体结构主要分3类:

α-NaFeO2层状型、橄榄石型、尖晶石型(表下图3)。

正极材料中,LiCoO2的纯相比较容易制备,产品具有α-NaFeO2层状结构,对应于美国粉末衍射标准联合委员会(JointCommitteeonPowerDiffractionStandards,简称JCPDS)发布的50-0653#卡片;LiMn2O4的纯相更容易得到,产品具有尖晶石立方结构,对应于JCPDS5-0782#卡片;LiFePO4因其Fe为+2价,必须在惰性气氛中制备,产品具有橄榄石结构,对应于JCPDS83-2092#卡片。

 

2.4 正极材料的粒度分布

正极材料的粒度大小会直接影响电池浆料和极片的制备,一般大粒度材料浆料黏度低、流动性好,可以少用溶剂、固含量高。

正极材料的颗粒大小通常采用激光粒度仪测试,将粒度分布曲线中累积分布为50%时最大颗粒的等效直径D50视作平均粒径。

正极材料粒度及其分布是与前驱体、烧结、破碎工艺密切相关的,通常情况下应呈现正态分布。

钴酸锂一般以四氧化三钴和碳酸锂为原料制备,其烧结特性很好,可通过控制Li/Co、烧结温度、升温速度等关键因素使其长大,因此对原料要求较低。

通过烧结粘连长大、破碎的粉体材料易出现大的异形颗粒,制浆涂布成型时易出现划痕、断带,因此钴酸锂标准对粒度分布曲线中最大颗粒的等效直径Dmax作了限制。

锰酸锂大多采用了与碱锰电池相同的原料——电解二氧化锰(EMD),其生产工艺是通过电解工艺沉积出整块的MnO2板,再通过剥离、破碎得到。

原料本身存在大的异形颗粒,因此锰酸锂标准对Dmax也作了限制。

动力型锰酸锂的Dmax较小,主要是考虑到采用球形锰源前驱体的因素,粒度分布可控。

镍钴酸锂、镍钴锰酸锂、镍钴铝酸锂等材料在产业化时,通常采用化学共沉淀来实现Ni、Co、Mn、Al等元素的原子级别混合,并通过控制结晶实现高密度。

因此,此类材料的粒度分布相对于钴酸锂较窄,标准中提出了D10、D90的要求,可以进一步计算K90作为反映粒度分布宽窄的指标

 

D50的大小设计也有不同应用的考虑,倍率型材料通常D50小,以缩短Li+在正极颗粒内部固相扩散的距离。

高压实型材料通常D50较大,并大多采用Bimodal方式,使小颗粒充分填隙于大颗粒之间,以实现最密堆积效果。

 

2.5正极材料的密度 

锂离子电池体积能量密度很大程度上取决于活性物质密度。

正极材料的密度与其所含元素的原子量、晶体排布方式、结晶程度、球形度、颗粒大小及分布、致密度等密切相关,受制备工艺影响。

正极材料的密度分为松装密度、振实密度、粉末压实密度、极片压实密度、理论密度等。

 

松装密度(apparentdensity,简称AD)通常采用斯柯特容量计法测量:

粉末经筛网自由流入布料箱,交替通过4块倾斜角为25°的玻璃板,经漏斗按一定高度自由落下充满量杯,由粉体净重和量杯体积计算得到结果。

振实密度(tapdensity,简称TD)是将一定重量的粉末加入有刻度的透明量器中,在规定条件下经一定振幅和频率的振动规定次数或时间后,测得单位容积粉末的重量。

粉末压实密度(pelletdensity,简称PD)是将一定重量的粉末加入具有固定直径和高度的硬质模具中,在压力作用下粉末产生移动和变形,形成具有一定密度和强度的压坯。

由粉体净重和压缩体积计算得出结果。

 

极片压实密度(pressdensity)是将材料与少量的黏结剂、导电剂混合制浆,经涂布、烘干、碾压成正极片,压实密度=面密度×(极片碾压厚度集流×体厚度)。

以不同的压力碾压后,对折极片不出现透光的临界状态对应的数值是极限压实密度。

理论密度(theoreticaldensity)是假设材料没有任何宏观和微观缺陷的理想晶体,利用XRD测量晶格常数得到晶胞体积,用它去除单个晶胞内所有原子的总质量得到。

振实密度测试方法简单,是衡量正极活性材料的一个重要指标。

表6列出了常见正极材料的振实密度、极片压实和理论密度数据。

LCO理论密度达到5.06g/cm3,其次是NCM、NCA、LMO、OLO,LFP最低,仅为3.57g/cm3。

从中不难看出,钴酸锂密度最高,这也是其在智能手机市场无法被其它材料取代的重要原因。

同一种材料,用于倍率型电池因采用了小颗粒解决方案,其对应的振实密度和压实密度都呈现较大幅度的下降。

磷酸铁锂因其理论密度最低、D50最小,振实密度和极片压实密度都在常见的几种正极材料中垫底(如表6)。

2.6正极材料的比表面积 

正极比表面积大时,电池的倍率特性较好,但通常更易与电解液发生反应,使得循环和存储变差。

正极材料比表面积与颗粒大小及分布、表面孔隙度、表面包覆物等密切相关。

在钴酸锂体系里,小颗粒的倍率型产品对应的比表面积最大。

磷酸铁锂因导电性差,颗粒以纳米团聚体形式设计、且表面包覆了无定形的碳,导致其比表面积在所有正极材料中最高。

锰系材料与钴系相比,本身存在难以烧结的特点,其比表面积也整体较大。

(如表7)

 

2.7正极材料的残存碱量

制备正极材料时,一般都会采用稍过量的Li/Me,以保证材料从里到外彻底锂化。

因此大多数正极材料表面都会残留一定量多余锂,这部分锂大多以Li2CO3形式存在。

对于NC、NCM、NCA等镍系材料,Ni含量越高,材料混排加剧,残存碱量越多;严重时导致电池浆料黏度大、电池存储性能变差。

残存碱测试通常采用酸碱电位滴定或人工滴定,将正极粉体分散到一定量纯水中,过滤,量取一定体积的滤液用标准盐酸溶液滴定。

选取酚酞和甲基橙作指示剂,依次在pH≈8和pH≈4附近出现2个等当点,分别记录所用标准盐酸体积。

但是对于NC、NCM和NCA等材料,测试过程要分外小心。

因为高镍材料大多以团聚颗粒形式存在,分散于水的过程中容易出现Li-Me混排,发生持续析锂现象,制样、测试的过程要精细、准确、可控。

即使如此,其结果中Li2CO3主要反映的是表面Li,LiOH则是颗粒表面Li、晶界Li以及表层晶体结构内3a位的Li的总和。

(如表8)

2.8正极材料的水分含量 

正极材料的水分含量与其比表面积、颗粒大小及分布、表面孔隙度、表面包覆物等密切相关。

水分含量对电池制浆影响很大。

通常正极浆料大多采用聚偏氟乙烯(PVDF)作黏结剂,N-甲基吡咯烷酮(NMP)为溶剂,在此有机体系中大分子量的PVDF并非完全溶解,而是溶胶的形式存在。

当正极材料的水分、残碱较高时,有机溶胶体系被破坏,PVDF将会从NMP中析出,使浆料发生黏度剧增,甚至出现果冻现象。

磷酸铁锂因其一次颗粒为纳米颗粒,比表面积大,容易吸收空气水分,因此给出了较宽的水分含量范围,但实际大多也控制在300ppm以下,否则在电池制浆时容易形成果冻。

(如表9)

 

2.9正极材料的杂质元素含量 

除了特意引入的掺杂元素,正极材料的杂质元素越低越好。

杂质元素一般是通过原料和生产过程引入的,需要在源头加以控制。

最常见的杂质元素是Na、Ca、Fe、Cu,Na在前驱体和锂盐中含量都较高,Ca主要是锂盐引入的。

磷酸铁锂本身Fe是而前驱体大多用硫酸盐和氯化物等可溶盐原料,在沉淀过程中易夹生带入结晶。

因此,这些标准加强了对SO3-2、Cl-的控制要求。

锂离子电池安全问题一直是大家关注的一个焦点,研究发现,电池及其材料制造过程从设备或环境污染直接引入的金属异物易刺穿隔膜,导致电池爆炸起火。

常见设备大多材质为不锈钢、镀锌钢板等,部分可以通过磁选方式收集。

由此,LCO、NCA、OLO等3种材料的相关标准提出了对磁性异物(主要为Fe、Cr、Ni和Zn等金属单质)的控制,要求达到300ppb(1ppb=1×10-9μg/g)以下。

(如表10和11)

 

2.10正极材料的比容量、首次效率、电压平台要求 

正极材料的比容量、首次充放电效率和电压平台等电化学性能指标,与其主元素含量、晶体结构、颗粒度大小、充放电电压、充放电电流大小等密切相关。

基本规律是Li含量越高,比容量越大。

客观上讲,平台容量比率这个指标强调的是放电电压平台,各种正极材料差异很大,不如改为平均电压,或中值电压更适宜,这样对保证和提高电池能量密度更有效。

(表12)

 

2.11正极材料的倍率特性 

用于电子烟、电动工具、航模、无人机、汽车启动电源的锂离子电池,对电池和材料倍率性能需求很高,要求能够实现5C、10C,甚至30C充放电。

正极材料的倍率特性与其颗粒度大小、结晶度、Co含量高低、C包覆量多少等因素相关。

高倍率型钴酸锂可以实现10C放电,且10C/1C的倍率达到90%以上。

(如表13)

 

2.12正极材料的循环寿命 

用于电动车的锂离子电池,期望能够实现2000次以上循环寿命。

电动车一般都是短途使用,假如按2天充一次电计,2000次的循环寿命可以支撑纯电动车上路近11年。

若按Tesla的ModalS携带60kW·h电、续航390km计,每天50km短途使用,1周才充一次电,1000次的循环寿命就可满足其19年车龄。

智能手机功能日渐强大,除了早期普通手机必备的电话、短信基本功能外,现有又具备了拍照、上网、微信、网购、办公、游戏等诸多功能,显示屏越来越大、机身越来越轻薄,对电池的能量密度要求也越来越高,同时循环寿命要达到500次以上,以支撑手机使用2

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1