苏教版一次函数教学教案.docx
《苏教版一次函数教学教案.docx》由会员分享,可在线阅读,更多相关《苏教版一次函数教学教案.docx(12页珍藏版)》请在冰豆网上搜索。
苏教版一次函数教学教案
1对1个性化辅导教学设计方案
学生姓名
年级
八年级
学科
数学
任课教师
备课日期
2013.7.13
本次课时数为_2_小时
教学课题
一次函数
上课日期
2013.7.15
教学目标
1、理解一次函数的意义,会用待定系数法确定一次函数的表达式。
2、会画一次函数图象,能根据图象理解函数性质
3、能用一次函数解决实际问题。
教学重点难点
1、一次函数的图像和性质。
2、一次函数的应用。
3.一次函数与正比例函数的识别。
课前回顾
1.三角形ABC三个顶点A、B、C的坐标分别为A(2,-1)、B(1,-3)、C(4,-3.5).
(1)在直角坐标系中画出三角形ABC;
(2)把三角形A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC,试写出三角形A1B1C1三个顶点的坐标,并在直角坐标系中描出这些点;
(3)求出三角形A1B1C1的面积.
2.已知平行四边形的三个顶点的坐标分别为O(0,0)、A(2,0)、B(1,1),则第四个顶点C的坐标是多少?
3.小华去某地考察环境污染问题,并且事先知道下面的信息:
(1)“悠悠日用化工品厂”在他所在地的北偏东30度的方向,距离此处3千米;
(2)“佳味调味品厂”在他现在所在地的北偏西45度的方向,距离此处2.4千米;
(3)“幸福水库”在他现在所在地的南偏东27度的方向,距离此处1.5千米的地方.
根据这些信息,请建立直角坐标系,帮助小华完成这张表示各处位置的简图.
4.已知边长为2的正方形OABC在直角坐标系中,(如图)OA与y轴的夹角为30°,求点A、点C、点B的坐标.
5.在平面直角坐标系内,A、B、C三点的坐标分别是A(5,0)、B(0,3)、C(5,3),O为坐标原点,点E在线段BC上,若△AEO为等腰三角形,求点E的坐标.(画出图象,不需要写计算过程)
本节内容
题型一、点的坐标
方法:
x轴上的点纵坐标为0,y轴上的点横坐标为0;
若两个点关于x轴对称,则他们的横坐标相同,纵坐标互为相反数;
若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;
若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;
1、若点A(m,n)在第二象限,则点(|m|,-n)在第____象限;
2、若点P(2a-1,2-3b)是第二象限的点,则a,b的范围为______________________;
3、已知A(4,b),B(a,-2),若A,B关于x轴对称,则a=_______,b=_________;若A,B关于y轴对称,则a=_______,b=__________;若若A,B关于原点对称,则a=_______,b=_________;
4、若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第______象限。
题型二、关于点的距离的问题
方法:
点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示;
任意两点
的距离为
;
若AB∥x轴,则
的距离为
;
若AB∥y轴,则
的距离为
;
点
到原点之间的距离为
1、点B(2,-2)到x轴的距离是_________;到y轴的距离是____________;
2、点C(0,-5)到x轴的距离是_________;到y轴的距离是____________;到原点的距离是____________;
3、点D(a,b)到x轴的距离是_________;到y轴的距离是____________;到原点的距离是____________;
4、已知点P(3,0),Q(-2,0),则PQ=__________,已知点
则MQ=________;
则EF两点之间的距离是__________;已知点G(2,-3)、H(3,4),则G、H两点之间的距离是_________;
5、两点(3,-4)、(5,a)间的距离是2,则a的值为__________;
6、已知点A(0,2)、B(-3,-2)、C(a,b),若C点在x轴上,且∠ACB=90°,则C点坐标为___________.
题型三、一次函数与正比例函数的识别
方法:
若y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数,特别的,当b=0时,一次函数就成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数,当k=0时,一次函数就成为若y=b,这时,y叫做常函数。
☆A与B成正比例óA=kB(k≠0)
1、当k_____________时,
是一次函数;
2、当m_____________时,
是一次函数;
3、当m_____________时,
是一次函数;
4、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为________________;
题型四、函数图像及其性质
方法:
函数
图象
性质
经过象限
变化规律
y=kx+b
(k、b为常数,
且k≠0)
k>0
b>0
b=0
b<0
k<0
b>0
b=0
b<0
☆一次函数y=kx+b(k≠0)中k、b的意义:
k(称为斜率)表示直线y=kx+b(k≠0)的倾斜程度;
b(称为截距)表示直线y=kx+b(k≠0)与y轴交点的,也表示直线在y轴上的。
☆同一平面内,不重合的两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:
当时,两直线平行。
当时,两直线垂直。
当时,两直线相交。
当时,两直线交于y轴上同一点。
☆特殊直线方程:
X轴:
直线Y轴:
直线
与X轴平行的直线与Y轴平行的直线
一、三象限角平分线二、四象限角平分线
1、对于函数y=5x+6,y的值随x值的减小而___________。
2、对于函数
y的值随x值的________而增大。
3、一次函数y=(6-3m)x+(2n-4)不经过第三象限,则m、n的范围是__________。
4、直线y=(6-3m)x+(2n-4)不经过第三象限,则m、n的范围是_________。
5、已知直线y=kx+b经过第一、二、四象限,那么直线y=-bx+k经过第_______象限。
6、无论m为何值,直线y=x+2m与直线y=-x+4的交点不可能在第______象限。
7、已知一次函数
(1)当m取何值时,y随x的增大而减小?
(2)当m取何值时,函数的图象过原点?
题型五、待定系数法求解析式
方法:
依据两个独立的条件确定k,b的值,即可求解出一次函数y=kx+b(k≠0)的解析式。
☆已知是直线或一次函数可以设y=kx+b(k≠0);
☆若点在直线上,则可以将点的坐标代入解析式构建方程。
1、若函数y=3x+b经过点(2,-6),求函数的解析式。
2、直线y=kx+b的图像经过A(3,4)和点B(2,7),
题型六、平移
方法:
直线y=kx+b与y轴交点为(0,b),直线平移则直线上的点(0,b)也会同样的平移,平移不改变斜率k,则将平移后的点代入解析式求出b即可。
直线y=kx+b向左平移2向上平移3<=>y=k(x+2)+b+3;(“左加右减,上加下减”)。
1.直线y=5x-3向左平移2个单位得到直线。
2.直线y=-x-2向右平移2个单位得到直线
3.直线y=
x向右平移2个单位得到直线
4.直线y=
向左平移2个单位得到直线
5.直线y=2x+1向上平移4个单位得到直线
6.直线y=-3x+5向下平移6个单位得到直线
7.直线
向上平移1个单位,再向右平移1个单位得到直线。
8.直线
向下平移2个单位,再向左平移1个单位得到直线________。
9.过点(2,-3)且平行于直线y=2x的直线是_________。
10.过点(2,-3)且平行于直线y=-3x+1的直线是___________.
11.把函数y=3x+1的图像向右平移2个单位再向上平移3个单位,可得到的图像表示的函数是____________;
12.直线m:
y=2x+2是直线n向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n上,则a=____________;
题型七、交点问题及直线围成的面积问题
方法:
两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解;
复杂图形“外补内割”即:
往外补成规则图形,或分割成规则图形(三角形);
往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高;
1、直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。
2、已知一个正比例函数与一个一次函数的图象交于点A(3,4),且OA=OB
(1)
求两个函数的解析式;
(2)求△AOB的面积;
课堂练习
1、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。
2、一次函数的图像与y=2x-5平行且与x轴交于点(-2,0)求解析式。
3、若一次函数y=kx+b的自变量x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9,求此函数的解析式。
4、已知直线y=kx+b与直线y=-3x+7关于y轴对称,求k、b的值。
5、已知直线y=kx+b与直线y=-3x+7关于x轴对称,求k、b的值。
6、已知直线y=kx+b与直线y=-3x+7关于原点对称,求k、b的值。
7、已知直线m经过两点(1,6)、(-3,-2),它和x轴、y轴的交点式B、A,直线n过点(2,-2),且与y轴交点的纵坐标是-3,它和x轴、y轴的交点是D、C;
(1)分别写出两条直线解析式,并画草图;
(2)计算四边形ABCD的面积;
(3)若直线AB与DC交于点E,求△BCE的面积。
8、如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,△AOP的面积为6;
(4)求△COP的面积;
(5)求点A的坐标及p的值;
(6)若△BOP与△DOP的面积相等,求直线BD的函数解析式。
9.如图,已知点A(2,4),B(-2,2),C(4,0),求△ABC的面积。
要点验收
一、选择题:
1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为()
(A)y=8x(B)y=2x+6(C)y=8x+6(D)y=5x+3
2.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()
(A)一象限(B)二象限(C)三象限(D)四象限
3.直线y=-2x+4与两坐标轴围成的三角形的面积是()
(A)4(B)6(C)8(D)16
4.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为()
(A)y1>y2(B)y1=y2
(C)y15.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,则有一组a,b的取值,使得下列4个图中的一个为正确的是()
6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第()象限.
(A)一(B)二(C)三(D)四
7.一次函数y=kx+2经过点(1,1),那么这个一次函数()
(A)y随x的增大而增大(B)y随x的增大而减小
(C)图像经过原点(D)图像不经过第二象限
8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在()
(A)第一象限(B)第二象限(C)第三象限(D)第四象限
9.要得到y=-
x-4的图像,可把直线y=-
x().
(A)向左平移4个单位(B)向右平移4个单位
(C)向上平移4个单位(D)向下平移4个单位
10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为()
(A)m>-
(B)m>5(C)m=-
(D)m=5
11.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是().
(A)k<
(B)
1(D)k>1或k<
12.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作()
(A)4条(B)3条(C)2条(D)1条
13.已知abc≠0,而且
=p,那么直线y=px+p一定通过()
(A)第一、二象限(B)第二、三象限
(C)第三、四象限(D)第一、四象限
14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是()
(A)-4(C)-415.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()
(A)1个(B)2个(C)3个(D)4个
课后小结
审批:
日期: