土木 地质岩土工程专业毕业英文翻译原文和译文.docx
《土木 地质岩土工程专业毕业英文翻译原文和译文.docx》由会员分享,可在线阅读,更多相关《土木 地质岩土工程专业毕业英文翻译原文和译文.docx(14页珍藏版)》请在冰豆网上搜索。
土木地质岩土工程专业毕业英文翻译原文和译文
FailurePropertiesofFracturedRockMassesasAnisotropic
HomogenizedMedia
Introduction
Itiscommonlyacknowledgedthatrockmassesalwaysdisplaydiscontinuoussurfacesofvarioussizesandorientations,usuallyreferredtoasfracturesorjoints.Sincethelatterhavemuchpoorermechanicalcharacteristicsthantherockmaterial,theyplayadecisiveroleintheoverallbehaviorofrockstructures,whosedeformationaswellasfailurepatternsaremainlygovernedbythoseofthejoints.Itfollowsthat,fromageomechanicalengineeringstandpoint,designmethodsofstructuresinvolvingjointedrockmasses,mustabsolutelyaccountforsuch‘‘weakness’’surfacesintheiranalysis.
Themoststraightforwardwayofdealingwiththissituationistotreatthejointedrockmassasanassemblageofpiecesofintactrockmaterialinmutualinteractionthroughtheseparatingjointinterfaces.Manydesign-orientedmethodsrelatingtothiskindofapproachhavebeendevelopedinthepastdecades,amongthem,thewell-known‘‘blocktheory,’’whichattemptstoidentifypoten-
tiallyunstablelumpsofrockfromgeometricalandkinematicalconsiderations(GoodmanandShi1985;Warburton1987;Goodman1995).Oneshouldalsoquotethewidelyuseddistinctelementmethod,originatingfromtheworksofCundallandcoauthors(CundallandStrack1979;Cundall1988),whichmakesuseofanexplicitfinite-differencenumericalschemeforcomputingthedisplacementsoftheblocksconsideredasrigidordeformablebodies.Inthiscontext,attentionisprimarilyfocusedontheformulationofrealisticmodelsfordescribingthejointbehavior.
Sincethepreviouslymentioneddirectapproachisbecominghighlycomplex,andthennumericallyuntractable,assoonasaverylargenumberofblocksisinvolved,itseemsadvisabletolookforalternativemethodssuchasthosederivedfromtheconceptofhomogenization.Actually,suchaconceptisalreadypartiallyconveyedinanempiricalfashionbythefamousHoekandBrown’scriterion(HoekandBrown1980;Hoek1983).Itstemsfromtheintuitiveideathatfromamacroscopicpointofview,arockmassintersectedbyaregularnetworkofjointsurfaces,maybeperceivedasahomogeneouscontinuum.Furthermore,owingtotheexistenceofjointpreferentialorientations,oneshouldexpectsuchahomogenizedmaterialtoexhibitanisotropicproperties.
Theobjectiveofthepresentpaperistoderivearigorousformulationforthefailurecriterionofajointedrockmassasahomogenizedmedium,fromtheknowledgeofthejointsandrockmaterialrespectivecriteria.Intheparticularsituationwheretwomutuallyorthogonaljointsetsareconsidered,aclosed-formexpressionisobtained,givingclearevidenceoftherelatedstrengthanisotropy.Acomparisonisperformedonanillustrativeexamplebetweentheresultsproducedbythehomogenizationmethod,makinguseofthepreviouslydeterminedcriterion,andthoseobtainedbymeansofacomputercodebasedonthedistinctelementmethod.Itisshownthat,whilebothmethodsleadtoalmostidenticalresultsforadenselyfracturedrockmass,a‘‘size’’or‘‘scaleeffect’’isobservedinthecaseofalimitednumberofjoints.Thesecondpartofthepaperisthendevotedtoproposingamethodwhichattemptstocapturesuchascaleeffect,whilestilltakingadvantageofahomogenizationtechnique.ThisisachievedbyresortingtoamicropolarorCosseratcontinuumdescriptionofthefracturedrockmass,throughthederivationofageneralizedmacroscopicfailureconditionexpressedintermsofstressesandcouplestresses.Theimplementationofthismodelisfinallyillustratedonasimpleexample,showinghowitmayactuallyaccountforsuchascaleeffect.
ProblemStatementandPrincipleofHomogenizationApproach
Theproblemunderconsiderationisthatofafoundation(bridgepierorabutment)restinguponafracturedbedrock(Fig.1),whosebearing
capacityneedstobeevaluatedfromtheknowledgeofthestrengthcapacitiesoftherockmatrixandthejointinterfaces.ThefailureconditionoftheformerwillbeexpressedthroughtheclassicalMohr-Coulombconditionexpressedbymeansofthecohesion
andthefrictionangle
.Notethattensilestresseswillbecountedpositivethroughoutthepaper.
Likewise,thejointswillbemodeledasplaneinterfaces(representedbylinesinthefigure’splane).Theirstrengthpropertiesaredescribedbymeansofaconditioninvolvingthestressvectorofcomponents(σ,τ)actingatanypointofthoseinterfaces
Accordingtotheyielddesign(orlimitanalysis)reasoning,theabovestructurewillremainsafeunderagivenverticalloadQ(forceperunitlengthalongtheOzaxis),ifonecanexhibitthroughouttherockmassastressdistributionwhichsatisfiestheequilibriumequationsalongwiththestressboundaryconditions,whilecomplyingwiththestrengthrequirementexpressedatanypointofthestructure.
ThisproblemamountstoevaluatingtheultimateloadQ﹢beyondwhichfailurewilloccur,orequivalentlywithinwhichitsstabilityisensured.Duetothestrongheterogeneityofthejointedrockmass,insurmountabledifficultiesarelikelytoarisewhentryingtoimplementtheabovereasoningdirectly.Asregards,forinstance,thecasewherethestrengthpropertiesofthejointsareconsiderablylowerthanthoseoftherockmatrix,theimplementationofakinematicapproachwouldrequiretheuseoffailuremechanismsinvolvingvelocityjumpsacrossthejoints,sincethelatterwouldconstitutepreferentialzonesfortheoccurrenceof
failure.Indeed,suchadirectapproachwhichisappliedinmostclassicaldesignmethods,isbecomingrapidlycomplexasthedensityofjointsincreases,thatisasthetypicaljointspacinglisbecomingsmallincomparisonwithacharacteristiclengthofthestructuresuchasthefoundationwidthB.
Insuchasituation,theuseofanalternativeapproachbasedontheideaofhomogenizationandrelatedconceptofmacroscopicequivalentcontinuumforthejointedrockmass,maybeappropriatefordealingwithsuchaproblem.Moredetailsaboutthistheory,appliedinthecontextofreinforcedsoilandrockmechanics,willbefoundin(deBuhanetal.1989;deBuhanandSalenc,on1990;Bernaudetal.1995).
MacroscopicFailureConditionforJointedRockMass
Theformulationofthemacroscopicfailureconditionofajointedrockmassmaybeobtainedfromthesolutionofanauxiliaryyielddesignboundary-valueproblemattachedtoaunitrepresentativecellofjointedrock(BekaertandMaghous1996;Maghousetal.1998).Itwillnowbeexplicitlyformulatedintheparticularsituationoftwomutuallyorthogonalsetsofjointsunderplanestrainconditions.ReferringtoanorthonormalframeO
whoseaxesareplacedalongthejointsdirections,andintroducingthefollowingchangeofstressvariables:
suchamacroscopicfailureconditionsimplybecomes
whereitwillbeassumedthat
Aconvenientrepresentationofthemacroscopiccriterionistodrawthestrengthenveloperelatingtoanorientedfacetofthehomogenizedmaterial,whoseunitnormalnIisinclinedbyanangleawithrespecttothejointdirection.Denotingby
and
thenormalandshearcomponentsofthestressvectoractinguponsuchafacet,itispossibletodetermineforanyvalueofathesetofadmissiblestresses(
)deducedfromconditions(3)expressedintermsof(
).ThecorrespondingdomainhasbeendrawninFig.2intheparticularcasewhere
.
Twocommentsareworthbeingmade:
1.ThedecreaseinstrengthofarockmaterialduetothepresenceofjointsisclearlyillustratedbyFig.2.Theusualstrengthenvelopecorrespondingtotherockmatrixfailureconditionis‘‘truncated’’bytwoorthogonalsemilinesassoonascondition
isfulfilled.
2.Themacroscopicanisotropyisalsoquiteapparent,sinceforinstancethestrengthenvelopedrawninFig.2isdependentonthefacetorientationa.Theusualnotionofintrinsiccurveshouldthereforebediscarded,butalsotheconceptsofanisotropiccohesionandfrictionangleastentativelyintroducedbyJaeger(1960),orMcLamoreandGray(1967).
NorcansuchananisotropybeproperlydescribedbymeansofcriteriabasedonanextensionoftheclassicalMohr-Coulombconditionusingtheconceptofanisotropytensor(BoehlerandSawczuk1977;Nova1980;AllirotandBochler1981).
ApplicationtoStabilityofJointedRockExcavation
Theclosed-formexpression(3)obtainedforthemacroscopicfailurecondition,makesitthenpossibletoperformthefailuredesignofanystructurebuiltinsuchamaterial,suchastheexcavationshowninFig.3,
wherehandβdenotetheexcavationheightandtheslopeangle,respectively.Sincenosurchargeisappliedtothestructure,thespecificweightγoftheconstituentmaterialwillobviouslyconstitutethesoleloadingparameterofthesystem.Assessingthestabilityofthisstructurewillamounttoevaluatingthemaximumpossibleheighth+beyondwhichfailurewilloccur.Astandarddimensionalanalysisofthisproblemshowsthatthiscriticalheightmaybeputintheform
whereθ=jointorientationandK+=nondimensionalfactorgoverningthestabilityoftheexcavation.Upper-boundestimatesofthisfactorwillnowbedeterminedbymeansoftheyielddesignkinematicapproach,usingtwokindsoffailuremechanismsshowninFig.4.
RotationalFailureMechanism[Fig.4(a)]
Thefirstclassoffailuremechanismsconsideredintheanalysisisadirecttranspositionofthoseusuallyemployedforhomogeneousandisotropicsoilorrockslopes.InsuchamechanismavolumeofhomogenizedjointedrockmassisrotatingaboutapointΩwithanangularvelocityω.Thecurveseparatingthisvolumefromtherestofthestructurewhichiskeptmot