土木 地质岩土工程专业毕业英文翻译原文和译文.docx

上传人:b****5 文档编号:6195733 上传时间:2023-01-04 格式:DOCX 页数:14 大小:338.56KB
下载 相关 举报
土木 地质岩土工程专业毕业英文翻译原文和译文.docx_第1页
第1页 / 共14页
土木 地质岩土工程专业毕业英文翻译原文和译文.docx_第2页
第2页 / 共14页
土木 地质岩土工程专业毕业英文翻译原文和译文.docx_第3页
第3页 / 共14页
土木 地质岩土工程专业毕业英文翻译原文和译文.docx_第4页
第4页 / 共14页
土木 地质岩土工程专业毕业英文翻译原文和译文.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

土木 地质岩土工程专业毕业英文翻译原文和译文.docx

《土木 地质岩土工程专业毕业英文翻译原文和译文.docx》由会员分享,可在线阅读,更多相关《土木 地质岩土工程专业毕业英文翻译原文和译文.docx(14页珍藏版)》请在冰豆网上搜索。

土木 地质岩土工程专业毕业英文翻译原文和译文.docx

土木地质岩土工程专业毕业英文翻译原文和译文

FailurePropertiesofFracturedRockMassesasAnisotropic

HomogenizedMedia

Introduction

Itiscommonlyacknowledgedthatrockmassesalwaysdisplaydiscontinuoussurfacesofvarioussizesandorientations,usuallyreferredtoasfracturesorjoints.Sincethelatterhavemuchpoorermechanicalcharacteristicsthantherockmaterial,theyplayadecisiveroleintheoverallbehaviorofrockstructures,whosedeformationaswellasfailurepatternsaremainlygovernedbythoseofthejoints.Itfollowsthat,fromageomechanicalengineeringstandpoint,designmethodsofstructuresinvolvingjointedrockmasses,mustabsolutelyaccountforsuch‘‘weakness’’surfacesintheiranalysis.

Themoststraightforwardwayofdealingwiththissituationistotreatthejointedrockmassasanassemblageofpiecesofintactrockmaterialinmutualinteractionthroughtheseparatingjointinterfaces.Manydesign-orientedmethodsrelatingtothiskindofapproachhavebeendevelopedinthepastdecades,amongthem,thewell-known‘‘blocktheory,’’whichattemptstoidentifypoten-

tiallyunstablelumpsofrockfromgeometricalandkinematicalconsiderations(GoodmanandShi1985;Warburton1987;Goodman1995).Oneshouldalsoquotethewidelyuseddistinctelementmethod,originatingfromtheworksofCundallandcoauthors(CundallandStrack1979;Cundall1988),whichmakesuseofanexplicitfinite-differencenumericalschemeforcomputingthedisplacementsoftheblocksconsideredasrigidordeformablebodies.Inthiscontext,attentionisprimarilyfocusedontheformulationofrealisticmodelsfordescribingthejointbehavior.

Sincethepreviouslymentioneddirectapproachisbecominghighlycomplex,andthennumericallyuntractable,assoonasaverylargenumberofblocksisinvolved,itseemsadvisabletolookforalternativemethodssuchasthosederivedfromtheconceptofhomogenization.Actually,suchaconceptisalreadypartiallyconveyedinanempiricalfashionbythefamousHoekandBrown’scriterion(HoekandBrown1980;Hoek1983).Itstemsfromtheintuitiveideathatfromamacroscopicpointofview,arockmassintersectedbyaregularnetworkofjointsurfaces,maybeperceivedasahomogeneouscontinuum.Furthermore,owingtotheexistenceofjointpreferentialorientations,oneshouldexpectsuchahomogenizedmaterialtoexhibitanisotropicproperties.

Theobjectiveofthepresentpaperistoderivearigorousformulationforthefailurecriterionofajointedrockmassasahomogenizedmedium,fromtheknowledgeofthejointsandrockmaterialrespectivecriteria.Intheparticularsituationwheretwomutuallyorthogonaljointsetsareconsidered,aclosed-formexpressionisobtained,givingclearevidenceoftherelatedstrengthanisotropy.Acomparisonisperformedonanillustrativeexamplebetweentheresultsproducedbythehomogenizationmethod,makinguseofthepreviouslydeterminedcriterion,andthoseobtainedbymeansofacomputercodebasedonthedistinctelementmethod.Itisshownthat,whilebothmethodsleadtoalmostidenticalresultsforadenselyfracturedrockmass,a‘‘size’’or‘‘scaleeffect’’isobservedinthecaseofalimitednumberofjoints.Thesecondpartofthepaperisthendevotedtoproposingamethodwhichattemptstocapturesuchascaleeffect,whilestilltakingadvantageofahomogenizationtechnique.ThisisachievedbyresortingtoamicropolarorCosseratcontinuumdescriptionofthefracturedrockmass,throughthederivationofageneralizedmacroscopicfailureconditionexpressedintermsofstressesandcouplestresses.Theimplementationofthismodelisfinallyillustratedonasimpleexample,showinghowitmayactuallyaccountforsuchascaleeffect.

ProblemStatementandPrincipleofHomogenizationApproach

Theproblemunderconsiderationisthatofafoundation(bridgepierorabutment)restinguponafracturedbedrock(Fig.1),whosebearing

capacityneedstobeevaluatedfromtheknowledgeofthestrengthcapacitiesoftherockmatrixandthejointinterfaces.ThefailureconditionoftheformerwillbeexpressedthroughtheclassicalMohr-Coulombconditionexpressedbymeansofthecohesion

andthefrictionangle

.Notethattensilestresseswillbecountedpositivethroughoutthepaper.

Likewise,thejointswillbemodeledasplaneinterfaces(representedbylinesinthefigure’splane).Theirstrengthpropertiesaredescribedbymeansofaconditioninvolvingthestressvectorofcomponents(σ,τ)actingatanypointofthoseinterfaces

Accordingtotheyielddesign(orlimitanalysis)reasoning,theabovestructurewillremainsafeunderagivenverticalloadQ(forceperunitlengthalongtheOzaxis),ifonecanexhibitthroughouttherockmassastressdistributionwhichsatisfiestheequilibriumequationsalongwiththestressboundaryconditions,whilecomplyingwiththestrengthrequirementexpressedatanypointofthestructure.

ThisproblemamountstoevaluatingtheultimateloadQ﹢beyondwhichfailurewilloccur,orequivalentlywithinwhichitsstabilityisensured.Duetothestrongheterogeneityofthejointedrockmass,insurmountabledifficultiesarelikelytoarisewhentryingtoimplementtheabovereasoningdirectly.Asregards,forinstance,thecasewherethestrengthpropertiesofthejointsareconsiderablylowerthanthoseoftherockmatrix,theimplementationofakinematicapproachwouldrequiretheuseoffailuremechanismsinvolvingvelocityjumpsacrossthejoints,sincethelatterwouldconstitutepreferentialzonesfortheoccurrenceof

failure.Indeed,suchadirectapproachwhichisappliedinmostclassicaldesignmethods,isbecomingrapidlycomplexasthedensityofjointsincreases,thatisasthetypicaljointspacinglisbecomingsmallincomparisonwithacharacteristiclengthofthestructuresuchasthefoundationwidthB.

Insuchasituation,theuseofanalternativeapproachbasedontheideaofhomogenizationandrelatedconceptofmacroscopicequivalentcontinuumforthejointedrockmass,maybeappropriatefordealingwithsuchaproblem.Moredetailsaboutthistheory,appliedinthecontextofreinforcedsoilandrockmechanics,willbefoundin(deBuhanetal.1989;deBuhanandSalenc,on1990;Bernaudetal.1995).

MacroscopicFailureConditionforJointedRockMass

Theformulationofthemacroscopicfailureconditionofajointedrockmassmaybeobtainedfromthesolutionofanauxiliaryyielddesignboundary-valueproblemattachedtoaunitrepresentativecellofjointedrock(BekaertandMaghous1996;Maghousetal.1998).Itwillnowbeexplicitlyformulatedintheparticularsituationoftwomutuallyorthogonalsetsofjointsunderplanestrainconditions.ReferringtoanorthonormalframeO

whoseaxesareplacedalongthejointsdirections,andintroducingthefollowingchangeofstressvariables:

suchamacroscopicfailureconditionsimplybecomes

whereitwillbeassumedthat

Aconvenientrepresentationofthemacroscopiccriterionistodrawthestrengthenveloperelatingtoanorientedfacetofthehomogenizedmaterial,whoseunitnormalnIisinclinedbyanangleawithrespecttothejointdirection.Denotingby

and

thenormalandshearcomponentsofthestressvectoractinguponsuchafacet,itispossibletodetermineforanyvalueofathesetofadmissiblestresses(

)deducedfromconditions(3)expressedintermsof(

).ThecorrespondingdomainhasbeendrawninFig.2intheparticularcasewhere

.

Twocommentsareworthbeingmade:

1.ThedecreaseinstrengthofarockmaterialduetothepresenceofjointsisclearlyillustratedbyFig.2.Theusualstrengthenvelopecorrespondingtotherockmatrixfailureconditionis‘‘truncated’’bytwoorthogonalsemilinesassoonascondition

isfulfilled.

2.Themacroscopicanisotropyisalsoquiteapparent,sinceforinstancethestrengthenvelopedrawninFig.2isdependentonthefacetorientationa.Theusualnotionofintrinsiccurveshouldthereforebediscarded,butalsotheconceptsofanisotropiccohesionandfrictionangleastentativelyintroducedbyJaeger(1960),orMcLamoreandGray(1967).

NorcansuchananisotropybeproperlydescribedbymeansofcriteriabasedonanextensionoftheclassicalMohr-Coulombconditionusingtheconceptofanisotropytensor(BoehlerandSawczuk1977;Nova1980;AllirotandBochler1981).

ApplicationtoStabilityofJointedRockExcavation

Theclosed-formexpression(3)obtainedforthemacroscopicfailurecondition,makesitthenpossibletoperformthefailuredesignofanystructurebuiltinsuchamaterial,suchastheexcavationshowninFig.3,

wherehandβdenotetheexcavationheightandtheslopeangle,respectively.Sincenosurchargeisappliedtothestructure,thespecificweightγoftheconstituentmaterialwillobviouslyconstitutethesoleloadingparameterofthesystem.Assessingthestabilityofthisstructurewillamounttoevaluatingthemaximumpossibleheighth+beyondwhichfailurewilloccur.Astandarddimensionalanalysisofthisproblemshowsthatthiscriticalheightmaybeputintheform

whereθ=jointorientationandK+=nondimensionalfactorgoverningthestabilityoftheexcavation.Upper-boundestimatesofthisfactorwillnowbedeterminedbymeansoftheyielddesignkinematicapproach,usingtwokindsoffailuremechanismsshowninFig.4.

RotationalFailureMechanism[Fig.4(a)]

Thefirstclassoffailuremechanismsconsideredintheanalysisisadirecttranspositionofthoseusuallyemployedforhomogeneousandisotropicsoilorrockslopes.InsuchamechanismavolumeofhomogenizedjointedrockmassisrotatingaboutapointΩwithanangularvelocityω.Thecurveseparatingthisvolumefromtherestofthestructurewhichiskeptmot

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 自然景观

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1