牵引变电所主要电器设备常见故障分析毕业论文.docx

上传人:b****5 文档编号:6148463 上传时间:2023-01-04 格式:DOCX 页数:34 大小:69.03KB
下载 相关 举报
牵引变电所主要电器设备常见故障分析毕业论文.docx_第1页
第1页 / 共34页
牵引变电所主要电器设备常见故障分析毕业论文.docx_第2页
第2页 / 共34页
牵引变电所主要电器设备常见故障分析毕业论文.docx_第3页
第3页 / 共34页
牵引变电所主要电器设备常见故障分析毕业论文.docx_第4页
第4页 / 共34页
牵引变电所主要电器设备常见故障分析毕业论文.docx_第5页
第5页 / 共34页
点击查看更多>>
下载资源
资源描述

牵引变电所主要电器设备常见故障分析毕业论文.docx

《牵引变电所主要电器设备常见故障分析毕业论文.docx》由会员分享,可在线阅读,更多相关《牵引变电所主要电器设备常见故障分析毕业论文.docx(34页珍藏版)》请在冰豆网上搜索。

牵引变电所主要电器设备常见故障分析毕业论文.docx

牵引变电所主要电器设备常见故障分析毕业论文

牵引变电所主要电器设备常见故障分析毕业论文

引言

我第国一条电气化铁路始建于宝成线宝鸡—凤州段,全长91km,于1961年8月正式通车,至今已40余年,截止2002年底全国电气化铁路营业里程已达18336km。

涵盖郑州、北京、成都等11个铁路局,伴随着已开工的郑州—徐州电气化工程建设,济南铁路局即将步入电气化铁路的运营,成为电气化铁路的新成员。

我国电气化铁路采用工频单相交流电力牵引制,额定电压25kV。

牵引动力为电能,牵引供电设备将国家电力系统输送的电能变换为适合电力机车使用的形式,电力机车则完成牵引任务,因此牵引供电设备和电力机车是电气化铁路的两大主要装备,铁路其他装备和基础设施应与之相适应。

本次设计主要针对牵引变电所电气设备的故障与分析

一牵引变电所主要电气设备之变压器故障分析

(一)变压器工作原理

变压器---利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器是电能传递或作为信号传输的重要元件

1.变压器----静止的电磁装置

变压器可将一种电压的交流电能变换为同频率的另一种电压的交流电能

电压器的主要部件是一个铁心和套在铁心上的两个绕组。

变压器原理

与电源相连的线圈,接收交流电能,称为一次绕组

与负载相连的线圈,送出交流电能,称为二次绕组

一次绕组的二次绕组的

 电压相量U1电压相量U2

电流相量I1电流相量I2

电动势相量E1电动势相量E2

匝数N1匝数N2

同时交链一次,二次绕组的磁通量的相量为φm,该磁通量称为主磁通

当变压器一次侧施加交流电压U1,流过一次绕组的电流为I1,则该电流在铁芯中会产生交变磁通,使一次绕组和二次绕组发生电磁联系,根据电磁感应原理,交变磁通穿过这两个绕组就会感应出电动势,其大小与绕组匝数以及主磁通的最大值成正比,绕组匝数多的一侧电压高,绕组匝数少的一侧电压低,当变压器二次侧开路,即变压器空载时,一二次端电压与一二次绕组匝数成正比,变压器起到变换电压的目的。

当变压器二次侧接入负载后,在电动势E2的作用下,将有二次电流通过,该电流产生的电动势,也将作用在同一铁芯上,起到反向去磁作用,但因主磁通取决于电源电压,而U1基本保持不变,故一次绕组电流必将自动增加一个分量产生磁动势F1,以抵消二次绕组电流所产生的磁动势F2,在一二次绕组电流L1、L2作用下,作用在铁芯上的总磁动势(不计空载电流I0),F1+F2=0,由于F1=I1N1,F2=I2N2,故I1N1+I2N2=0,由式可知,I1和I2同相,所以

I1/I2=N2/N1=1/K

由式可知,一二次电流比与一二次电压比互为倒数,变压器一二次绕组功率基本不变,(因变压器自身损耗较其传输功率相对较小),二次绕组电流I2的大小取决于负载的需要,所以一次绕组电流I1的大小也取决于负载的需要,变压器起到了功率传递的作用。

(二)变压器常见故障

根据有关变压器故障的资料并进行分析的结果表明,尽管老化趋势及使用不同,故障的基本原因仍然相同。

多种因素都可能影响到绝缘材料的预期寿命,负责电气设备操作的人员应给予细致地考虑。

这些因素包括:

误操作、振动、高温、雷电或涌流、过负荷、三相负载不平衡、对控制设备的维护不够、清洁不良、对闲置设备的维护不够、不恰当的润滑以及误用等。

1、线路涌流

线路涌流(或称线路干扰)在导致变压器故障的所有因素中被列为首位。

这一类中包括由误操作、变压器解并列、有载调压分接头拉弧等原因引起的操作过电压、电压峰值、线路故障/闪络以及其他输配(T&D)方面的异常现象。

这类起因在变压器故障中占有绝大部分的比例。

2、绝缘老化

绝缘老化排列在第二位。

由于绝缘老化的因素,变压器的平均寿命仅有17.8年,大大低于预期为35~40年的寿命!

3、受潮

受潮这一类别包括由洪水、管道渗漏、顶盖渗漏、水分沿套管或配件侵入油箱以及绝缘油中存在水分。

4、维护不良

  保养不够被列为第四位导致变压器故障的因素。

这一类包括未装变压器的保护装置或安装的不正确、冷却剂泄漏、污垢淤积以及腐蚀。

5、过载

这一类包括了确定是由过负荷导致的故障,仅指那些长期处于超过铭牌功率工作状态下小马拉大车的变压器。

过负荷经常会发生在发电厂或用电部门持续缓慢提升负荷的情况下。

最终造成变压器超负荷运行,过高的温度导致了绝缘的过早老化。

当变压器的绝缘纸板老化后,绝缘纸绝缘强度降低。

因此,外部故障的冲击力就可能导致绝缘破损,进而发生故障。

6、雷击

  雷电波看来比以往的研究要少,这是因为改变了对起因的分类方法。

现在,除非明确属于雷击事故,一般的冲击故障均被列为“线路涌流”。

7、三相负载不平衡

由于三相负载不平衡所引起某相长期过载,而使该相温度偏高进而使绝缘老化,产生匝间短路或相间短路。

8、连接松动

连接松动也可以包括在维护不足一类中,但是有足够的数据可将其独立列出,因此与以往的研究也有所不同。

这一类包括了在电气连接方面的制造工艺以及保养情况,其中的一个问题就是不同性质金属之间不当的配合,尽管这种现象近几年来有所减少。

另一个问题就是螺栓连接间的紧固不恰当。

9、工艺/制造不良

故障原因在于工艺或制造方面的缺陷。

例如出线端松动或无支撑、垫块松动、焊接不良、铁心绝缘不良、抗短路强度不足以及油箱中留有异物。

10、破坏及故意损坏

这一类通常确定为明显的故意破坏行为。

这种现象时有发生,比如盗窃、人为破坏等。

配变在送电和运行中,常见的故障和异常现象有:

(1)变压器在经过停运后送电或试送电时,往往发现电压不正常,如两相

高-相低或指示为零;有的新投运变压器三相电压都很高,使部分用电设备因电压过高

而烧毁;

(2)高压保险丝熔断送不上电;

(3)雷雨过后变压器送不上电;

(4)变压器声音不正常,如发出“吱吱”或“噼啪”响声;在运行中

发出如青蛙“唧哇唧哇”的叫声等;

(5)高压接线柱烧坏,高压套管有严重破损和闪络痕迹;

(6)在正常冷却情况下,变压器温度失常并且不断上升;

(7)油色变化过甚,油内出现碳质;

(8)变压器发出吼叫声,从安全气道、储油柜向外喷油,

油箱及散热管变形、漏油、渗油等。

(三)常见故障及其诊断措施

1.变压器渗油引起的故障

变压器渗漏油不仅会给电力企业带来较大的经济损失、环境污染,还会影响变压器的安全运行,可能造成不必要的停运甚至变压器的损毁事故,给电力客户带来生产上的损失和生活上的不便。

因此,有必要解决变压器渗漏油问题。

油箱焊缝渗油。

对于平面接缝处渗油可直接进行焊接,对于拐角及加强筋连接处渗油则往往渗漏点查找不准,或补焊后由于内应力的原因再次渗漏。

对于这样的渗点可加用铁板进行补焊,两面连接处,可将铁板裁成纺锤状进行补焊;三面连接处可根据实际位置将铁板裁成三角形进行补焊;该法也适用于套管电流互感器二次引线盒拐角焊缝渗漏焊接。

高压套管升高座或进人孔法兰渗油。

这些部位主要是由于胶垫安装不合适,运行中可对法兰进行施胶密封。

封堵前用堵漏胶将法兰之间缝隙堵好,待堵漏胶完全固化后,退出一个法兰紧固螺丝,将施胶枪嘴拧入该螺丝孔,然后用高压将密封胶注入法兰间隙,直至各法兰螺丝帽有胶挤出为止。

低压侧套管渗漏。

其原因是受母线拉伸和低压侧引线引出偏短,胶珠压在螺纹上。

受母线拉伸时,可按规定对母线用伸缩节连接;如引线偏短,可重新调整引线引出长度;对调整引线有困难的,可在安装胶珠的各密封面加密封胶;为增大压紧力可将瓷质压帽换成铜质压帽。

防爆管渗油。

防爆管是变压器内部发生故障导致变压器内部压力过大,避免变压器油箱破裂的安全措施。

但防爆管的玻璃膜在变压器运行中由于振动容易破裂,又无法及时更换玻璃,潮气因此进入油箱,使绝缘油受潮,绝缘水平降低,危及设备的安全。

为此,把防爆管拆除,改装压力释放阀即可。

2.铁心多点接地引起的故障

变压器铁心有且只能有一点接地,出现两点及以上的接地,为多点接地。

变压器铁心多点接地运行将导致铁心出现故障,危及变压器的安全运行,应及时进行处理。

直流电流冲击法。

拆除变压器铁心接地线,在变压器铁心与油箱之间加直流电压进行短时大电流冲击,冲击3~5次,常能烧掉铁心的多余接地点,起到很好的消除铁心多点接地的效果。

开箱检查。

对安装后未将箱盖上定位销翻转或除去造成多点接地的,应将定位销翻转过来或除掉。

夹件垫脚与铁轭间的绝缘纸板脱落或破损者,应按绝缘规范要求,更换一定厚度的新纸板。

因夹件肢板距铁心太近,使翘起的叠片与其相碰,则应调整夹件肢板和扳直翘起的叠片,使两者间距离符合绝缘间隙标准。

清除油中的金属异物、金属颗粒及杂质,清除油箱各部的油泥,有条件则对变压器油进行真空干燥处理,清除水分。

3接头过热

载流接头是变压器本身及其联系电网的重要组成部分,接头连接不好,将引起发热甚至烧断,严重影响变压器的正常运行和电网的安全供电。

因此,接头过热问题一定要及时解决。

铜铝连接。

变压器的引出端头都是铜制的,在屋外和潮湿的场所中,不能将铝导体用螺栓与铜端头连接。

当铜与铝的接触面间渗入含有溶解盐的水分,即电解液时,在电耦的作用下,会产生电解反应,铝被强烈电腐蚀。

结果,触头很快遭到破坏,以致发热甚至可能造成重大事故。

为了预防这种现象,在上述装置中需要将铝导体与铜导体连接时,采用一头为铝,另一头为铜的特殊过渡触头。

普通连接。

普通连接在变压器上是相当多的,它们都是过热的重点部位,对平面接头,对接面加工成平面,清除平面上的杂质,最好均匀地涂上导电膏,确保连接良好。

油浸电容式套管过热。

处理的办法可以用定位套固定方式的发热套管,先拆开将军帽,若将军帽、引线接头丝扣有烧损,应用牙攻进行修理,确保丝扣配合良好,然后在定位套和将军帽之间垫一个和定位套截面大小一致、厚度适宜的薄垫片,重新安装将军帽,使将军帽在拧紧情况下,正好可以固定在套管顶部法兰上。

引线接头和将军帽丝扣公差配合应良好,否则应予以更换,以确保在拧紧的情况下,丝扣之间有足够的压力,减小接触电阻。

4变压器在线监测技术

变压器在线监测的目的,就是通过对变压器特征信号的采集和分析,判别出变压器的状态,以期检测出变压器的初期故障,并监测故障状态的发展趋势。

目前,电力变压器的在线监测是国际上研究最多的对象之一,提出了很多不同的方法。

油中溶解性气体分析技术。

由于变压器内部不同的故障会产生不同的气体,因此通过分析油中气体的成分、含量、产气率和相对百分比,就可达到对变压器绝缘诊断的目的。

几种典型的油中溶解气体,如H2、CO、CH4、C2H6、C2H4和C2H2,常被用作分析的特征气体。

在检测出各气体成分及含量后,用特征气体法或比值法等方法判断变压器的内部故障。

局部放电在线监测技术。

变压器在内部出现故障或运行条件恶劣时,会由于局部场强过高而产生局部放电(PD)。

PD水平及其增长速率的明显变化,能够指示变压器内部正在发生的变化或反映绝缘中由于某些缺陷状态而产生的固体绝缘的空洞、金属粒子和气泡等。

振动分析法。

振动分析法就是一种广泛用于监测这种变压器故障的有效方法。

通过对变压器振动信号的监测和分析,从而达到对变压器状态监测的目的。

红外测温技术。

红外热像技术是利用红外探测器接受被测目标的红外辐射信号,经放大处理,转换成标准视频信号,然后通过电视屏或监视器显示红外热像图。

当变压器引线接触不良、过负荷运行等情况时都会引起导电回路局部过热,铁芯多点接地也会引起铁芯过热。

频率响应分析法。

频率响应分析法是一种用于判断变压器绕组或引线结构是否偏移的有效方法。

绕组机械位移会产生细微的电感或电容的改变,而频率响应法正是通过测量这种细微的改变来达到监测变压器绕组状态的目的。

绕组温度指示。

绕组温度指示器就是用于监测变压器绕组的温度,给出越限报警,并在需要时启动保护跳闸。

目前已开发出一种用于大型变压器绕组温度监测的新技术,即将一条光纤嵌入变压器绕组以便直接测量绕组的实时温度,从而改进变压器的预测建模技术,并达到实时监测变压器绕组温度状态的目的。

其他状态监测方法。

低压脉冲响应测试(LowVoltageImpulseResponse,LVIR)也是一种有效的变压器状态监测测方法,并且已经是一种用于确定变压器是否能通过短路试验的公认方法。

此外,绕组间的漏感测试、油的相对湿度测试、绝缘电阻测试等也是变压器状态监测的常用方法。

(四)变压器放电故障

1变压器电流激增

随着城网和农网改造的深入,城市和农村的用电量都有了很大程度的增加,但由于部分低压线路维护不到位,发生过负荷和短路的可能性大大增加,以致变压器的电流超过额定电流几倍甚至几十倍,此时,绕组受到电磁力矩较大影响而发生移位变形。

由于电流的剧增,配电变压器的线圈温度迅速升高,导致绝缘加速老化,形成碎片状脱落,使线体裸露而造成匝间短路,烧坏配电变压器。

1.1绕组绝缘受潮

此故障主要因绝缘油质不佳或油面降低导致。

a.变压器未投入前,潮气侵入使绝缘受潮;或者变压器处于潮湿场所、多雨地区,湿度过高。

b.在储存、运输、运行过程中维护不当,水分、杂质或其他油污混入油中,使绝缘强度大幅降低。

c.制造时,绕组内层浸漆不透,干燥不彻底,绕组引线接头焊接不良、绝缘不完整导致匝间、层间短路。

配电变压器绕组损坏部分发生在一次侧,主要是匝间、层间短路或绕组对地,在达到或接近使用年限时,绝缘自然枯焦变黑,失去绝缘性。

d.绝缘老化或油面降低某些年久失修的老变压器,因种种原因致使油面降低,绝缘油与空气接触面积增大,加速空气中水分进入油面,减低绝缘强度。

当绝缘降低到一定值时,发生短路。

因此,运行中的配电变压器一定要定期进行油位检测和油脂化验,发现问题及时处理。

2无载调压开关

2.1分接开关裸露受潮

将军帽、套管、分接开关、端盖、油阀等处渗漏油,使分接开关裸露在空气中,逐渐受潮。

因为配电变压器的油标指示设在油枕中部,且变压器箱体到油枕内的输油管口已高出油枕底部25mm以上。

变压器在运行中产生的碳化物受热后又产生油焦等物质将油标呼吸孔堵塞,少量的变压器油留在油标内,在负荷、环境温度变化时,油标管内的油位不变化,容易产生假油面而不重视加油。

裸露的分接开关绝缘受潮一段时间后性能下降,导致放电短路,损坏变压器。

2.2高温过热

变压器油主要是对绕组起绝缘、散热和防潮作用。

变压器中的油温过高,将直接影响变压器的正常运行和使用寿命。

正常运转中的变压器分接开关,长期浸在高于常温的油中,特别是偏远农村的线路长,电压降大,使分接开关长期运行于过负荷状态,会引起分接开关触头出现碳膜和油垢,触头发热后又使弹簧压力降低,特别是触环中弹簧,由于材料和制造工艺差,弹性降低很快;或出现零件变形,分接开关的引线头和接线螺丝松动等情况,即使处理,也可能使导电部位接触不良,接触电阻增大,产生发热和电弧烧伤,电弧还将产生大量气体,分解出具有导电性能的碳化物和被熔化的铜粒,喷涂在箱体、一/二次套管、绕组层间、匝层等处,引起短路,烧坏变压器。

2.3本身缺陷

分接开关的质量差,结构不合理,压力不够,接触不可靠,外部字轮位置与内部实际位置不完全一致,引起动、静触头位置不完全接触,错位的动、静触头使两抽头之间的绝缘距离变小,并在两抽头之间发生短路或对地放电,短路电流很快就把抽头线圈匝烧坏,甚至导致整个绕组损坏。

2.4人为原因

部分电工对无载调压开关的原理不清楚,经常出现调压不正确,导致动静触头部分接触等;安装工艺差,对变压器各部位紧固螺栓的检查不仔细,造成变压器箱体进水,使分接开关绝缘、绕组绝缘受潮;运行维护不到位,没有严格执行DL/T572-1995《变压器运行规程》,多数变压器从安装到变压器烧毁期间,一直未进行过常规维护与污垢处理,导致变压器散热条件变差而烧毁。

因此,在对配电变压器进行无载调压后,为避免分接开关的接触不良,需用直流电桥测试回路的完整性以及三相电阻是否均匀。

3铁芯多点接地

3.1铁芯接地原因

a.铁芯夹板穿心螺栓套管损坏后与铁芯接触,形成多点接地,造成铁芯局部过热而损坏线圈绝缘。

b.铁芯与夹板之间有金属异物或金属粉末,在电磁力的作用下形成“金属桥”,引起多点接地。

c.铁芯与夹板之间的绝缘受潮或多处损伤,导致铁芯与夹板有多点出现低电阻接地。

3.2铁芯硅钢片短路

虽然硅钢片之间涂有绝缘漆,但其绝缘电阻小,只能隔断涡流而不能阻止高压感应电流。

当硅钢片表面上的绝缘漆因运行年久,绝缘自然老化或损伤后,将产生很大的涡流损耗,增加铁芯局部发热,使高、低绕组温升加剧,造成变压器绕组绝缘击穿短路而烧毁。

因此,对配电变压器应定期进行吊芯检测,发现绝缘超标时,及时处理。

4雷击与谐振

4.1雷击过电压

配电变压器的高低压线路大多是由架空线路引入,在山区、林地、平原受雷击的几率较高,线路遭雷击时,在变压器绕组上将产生高于额定电压几十倍以上的冲击电压,倘若安装在配电变压器高低压出线套管处的避雷器不能进行有效保护或本身存在某些隐患,如避雷器未投入运行或未按时进行预防性试验,避雷器接地不良,接地线路电阻超标等,则配电变压器遭雷击损坏将难以避免。

4.2系统发生铁磁谐振

农网中10kV配电线路由于长短、对地距离、导线规格不一,从而具备形成过电压的条件。

在这些农网中,小型变压器、电焊机、调速机较多,使得10kV配电系统的某些电气参数发生很大变化,导致系统出现谐振。

每谐振一次,变压器电流激增一次,此时除了造成变压器一次侧熔断器熔断外,还将损坏变压器绕组。

个别情况下,还会引起变压器套管发生闪络或爆炸。

5二次侧短路

当变压器发生二次侧短路、接地等故障时,二次侧将产生高于额定电流20~30倍的短路电流,而在一次侧必然要产生很大的电流来抵消二次侧短路电流的消磁作用,如此大的电流作用于高电压绕组上,线圈内部将产生很大的机械应力,致使线圈压缩,其绝缘衬垫、垫板就会松动脱落,铁芯夹板螺丝松弛,高压线圈畸变或崩裂,导致变压器在很短的时间内烧毁。

6一/二次熔体选择不当

配电变压器一/二次通常采用熔丝保护,因为熔丝是用于保护变压器的一/二次出线套管、二次配线和变压器的内部线路,所以若熔断电流选择过大,将起不到保护作用。

若熔断电流选择过小,则在正常运行状况下极易熔断,造成用户供电的中断,此时,若三相熔丝只熔断一相,则对用户造成的危害更大。

因此,在正常使用中,熔丝的选择标准为:

一次侧熔丝熔断电流为变压器一次额定电流的1.5~2倍;二次侧熔丝熔断电流为变压器二次侧额定电流。

7其它

a.由于变压器的一/二次侧引出均为铜螺杆,而架空线路一般都采用铝芯导线,铜铝之间在外界因素的影响下,极易氧化腐蚀。

在电离的作用下,铜铝之间形成氧化膜,接触电阻增大,使引线处铜螺杆、螺帽、引线烧毁。

b.套管闪络放电也是变压器常见异常之一。

造成此种异常的原因有:

制造中有隐伤或安装中碰伤;胶珠老化渗油后遇到空气中的导电金属尘埃吸附在套管表面,当遇到潮湿天气、系统谐振、雷击过电压等,就会发生套管闪络放电或爆炸。

c.在检修或安装过程中,紧固或松动变压器引出线螺帽时,导电螺杆跟着转动,导致一次侧线圈引线断线或二次侧引出的软铜片相碰造成相间短路。

在吊芯检修时,有时不慎将线圈、引线、分接开关等处的绝缘破坏或工具遗留在变压器内。

在变压器上进行检修时,不慎跌落物件、工具砸坏套管,轻则发生闪络,重则短路接地。

d.并联运行的配电变压器在检修、试验或更换电缆后未进行逐一校相,随意接线导致相序接错,变压器在投入运行后将产生很大的环流,烧毁变压器。

(五)变压器故障典型案例

一、短路故障案例

1.老厂主变压器多次过流重合动作绕组变形

  

(1)案例。

我厂老厂#7机31.5MVA、110kV变压器(SFSZ8—31500/110)发生短路事故,重瓦斯保护动作,跳开主变压器三侧开关。

返厂吊罩检查,发现C相高压绕组失团,C相中压绕组严重变形,并挤破囚扳造成中、低压绕组短路;C相低压绕组被烧断二股;B相低压、中压绕组严重变形;所有绕组匝间散布很多细小铜珠、铜末;上部铁芯、变压器底座有锈迹。

  事故发生的当天有雷雨。

事故发生前,曾多次发生10kV、35kV侧线路单相接地。

13点40分35kV侧过流动作,重合成功;18点44分35kV侧再次过流动作,重合闸动作,同时主变压器重瓦斯保护跳主变压器三侧开关。

经查35kV距变电站不远处B、C相间有放电烧损痕迹。

(2)原因分析。

根据国家标准GBl094.5—日5规定110kV电力变压器的短路表观容量为800MVA,应能承受最大非对称短路电流系数约为2.55。

该变压器编制的运行方式下:

电网最大运行方式110kV三相出口短路的短路容量为1844MVA;

35kV三相出口短路为365MVA;

10kV三相出口短路为225.5MVA;

事故发生时,实际短路容量尚小于上述数值。

据此计算变压器应能承受此次短路冲击。

事故当时损坏的变压器正与另一台31500/110变压器并列运行,经受同样短路冲击而另一台变压器却未损坏。

因此事故分析认为导致变压器B、C相绕组在电动力作用下严重变形并烧毁,由于该变压器存在以下问题:

  1)变压器绕组松散。

高压绕组辐向用手可摇动5mm左右。

从理论分析可知,短路电流产生的电动力可分为辐向力和轴向力。

外侧高压绕组受的辐向电磁力,从内层至外层三线性递减,最内层受的辐向电磁力最大,两倍于绕组所受的平均圆周力。

当绕组卷紧芝内层导线受力后将一部分力转移到外层,结果造成内层导线应力趋向减小,而外层导绞受力增大,内应力关系使导线上的作用力趋于均衡。

内侧中压绕组受力方向相反,但均§七用的原理和要求一致。

绕组如果松散,就起不到均衡作用,从而降低了变压器的抗短路充击的能力。

  外侧高压绕组所受的辐向电动力是使绕组导线沿径向向外胀大,受到的是拉张力,表观为向外撑开;内侧中压绕组所受的辐向电动力是使绕组导线沿径向向内压缩,受到的是压力,表现为向内挤压。

这与该变压器的B、C相高、中压绕组在事故中的结果一致。

2)经吊罩检查发现该变压器撑条不齐且有移位、垫块有松动位移。

这样大大降低了内侧中压绕组承受辐向力和轴向力的能力,使绕组稳定性降低。

从事故中的C相中压绕组辐向失稳向内弯曲的情况,可以考虑适当增加撑条数目,以减小导线所受辐向弯曲应力。

3)绝缘结构的强度不高。

由于该变压器中、低压绕组采用的是围板结构,而围板本身较软,经真空于燥收缩后,高、中、低绕组之间呈空松的格局,为了提高承受短路的能力,宜在内侧绕组选用硬纸筒绝缘结构。

(3)措施。

这是一起典型的因变压器动稳定性能差而造成的变压器绕组损坏事故,应吸取的教训和相应措施包括:

1)在设计上应进一步寻求更合理的机械强度动态计算方式;适当放宽设计安全裕度;内绕组的内衬,采用硬纸筒绝缘结构;合理安排分接位置,尽量减小安匝不平衡。

2)制造工艺上可从加强辐向和轴向强度两方面进行,措施主要有:

采用女式绕线机绕制绕组,采用先进自动拉紧装置卷紧绕组;牢固撑紧绕组与铁心之间的定位,采用整产套装方式;采用垫块预密化处理、绕组恒压干燥方式;绕组整体保证高度一致和结构完整;强化绕组端部绝缘;保证铁轭及夹件紧固。

3)要加强对大中型变压器的质量监制管理,在订货协议中应强调对中、小容量的变压器在型式试验中作突发短路试验,大型变压器要作缩小模型试验,提高变压器的抗短路能力,同时加强变电站10kV及35kV系统维护,减少变压器遭受出口短路冲击机率。

(六)变压器故障的处理

运行中的配电变压器,绝大部分安装在室外,所以它经常受着各种变化着的气候条件的影响。

另外,变压器所带的负荷经常变化,容易将变压器烧毁。

因此,变压器需要定期进行巡视,应从变压器运行

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1