数学建模课后作业第五章.docx

上传人:b****5 文档编号:6070142 上传时间:2023-01-03 格式:DOCX 页数:41 大小:986.93KB
下载 相关 举报
数学建模课后作业第五章.docx_第1页
第1页 / 共41页
数学建模课后作业第五章.docx_第2页
第2页 / 共41页
数学建模课后作业第五章.docx_第3页
第3页 / 共41页
数学建模课后作业第五章.docx_第4页
第4页 / 共41页
数学建模课后作业第五章.docx_第5页
第5页 / 共41页
点击查看更多>>
下载资源
资源描述

数学建模课后作业第五章.docx

《数学建模课后作业第五章.docx》由会员分享,可在线阅读,更多相关《数学建模课后作业第五章.docx(41页珍藏版)》请在冰豆网上搜索。

数学建模课后作业第五章.docx

数学建模课后作业第五章

第五章.图论组合优化实验

5.2.基本实验

1.最短路问题的应用——设备更新问题

解:

令xi为表示第i年初购买一台新设备,令(xi,xj)为第i年初购买用到第j年初的设备,令xij为第i年到j年所支付的总费用。

可得:

(x1,x2)x12=2.5+0.3-2=0.8;

(x1,x3)x13=2.5+0.3+0.5-1.6=1.7;

(x1,x4)x14=2.5+0.3+0.5+0.8-1.3=2.8;

(x1,x5)x15=2.5+0.3+0.5+0.8+1.2-1.1=4.2;

(x2,x3)x23=2.6+0.3-2=0.9;

(x2,x4)x24=2.6+0.3+0.5-1.6=1.8;

(x2,x5)x25=2.6+0.3+0.5+0.8-1.3=2.9;

(x3,x4)x34=2.8+0.3-2=1.1;

(x3,x5)x35=2.8+0.3+0.5-1.6=2.0;

(x4,x5)x45=3.1+0.3-2=1.4;

从第一年初到第五年初的费用为:

(1)x12+x25=0.8+2.9=3.7;

x12+x24+x45=0.8+1.8+1.4=4;

x12+x23+x35=0.8+0.9+2=3.7;

x12+x23+x34+x45=0.8+0.9+1.1+1.4=4.2;

(2)x14+x45=2.8+1.4=4.2;

x13+x34+x45=1.7+1.1+1.4=4.2,

(3)x13+x35=1.7+2.0=3.7;

(4)x15=4.2;

由以上的结果可知最少的支出费用为

x13+x35=1.7+2.0=3.7万元;

x12+x23+x35=0.8+0.9+2=3.7万元;

x12+x25=0.8+2.9=3.7万元;

2.生产计划与库存管理

解:

(1)设x1、x2、x3、x4为第一、二、三、四季度生产量,则可以得出第第一、二、三、四季度支出费用为

第一季度费用z1:

5*x1+(x1-10);

第二季度费用z2:

5*x2+(x1+x2-24);

第三季度费用z3:

6*x3+(x1+x2+x3-44);

第四季度费用z4:

6*x4+(x1+x2+x3+x4-52);

总的支出费用为:

Z=z1+z2+z3+z4=9x1+8x2+8x3+7x4-130;

约束条件为:

x1+x2+x3+x4=52;

x1<=14;

x1>=10;

x2<=15;

x1+x2>=24;

x3<=15;

x1+x2+x3>=44;

x4<=13;

可以得出lingo程序如下:

min=9*x1+8*x2+8*x3+7*x4-130;

x1+x2+x3+x4=52;

x1<=14;

x1>=10;

x2<=15;

x1+x2>=24;

x3<=15;

x1+x2+x3>=44;

x4<=13;

运行程序后可得:

Globaloptimalsolutionfound.

Objectivevalue:

292.0000

Infeasibilities:

0.000000

Totalsolveriterations:

0

ModelClass:

LP

Totalvariables:

4

Nonlinearvariables:

0

Integervariables:

0

Totalconstraints:

9

Nonlinearconstraints:

0

Totalnonzeros:

18

Nonlinearnonzeros:

0

 

VariableValueReducedCost

X114.000000.000000

X215.000000.000000

X315.000000.000000

X48.0000000.000000

RowSlackorSurplusDualPrice

1292.0000-1.000000

20.000000-7.000000

30.0000000.000000

44.0000000.000000

50.0000001.000000

65.0000000.000000

70.0000001.000000

80.000000-2.000000

95.0000000.000000则可得x1=14,x2=15,x3=15,x4=8;

即第一季度生产14万盒,

第二季度生产15万盒,

第三季度15万盒,

第四季度为8万盒。

总的支出费用为292万元。

(2)由题目可得新的lingo程序:

min=7*x1+6*x2+6*x3+6*x4-31;

x1+x2+x3+x4=52;

x1<=13;

x1>=10;

x2<=15;

x1+x2>=24;

x3<=15;

x1+x2+x3>=43;

x4<=13;

运行程序之后可得:

Globaloptimalsolutionfound.

Objectivevalue:

294.0000

Infeasibilities:

0.000000

Totalsolveriterations:

0

ModelClass:

LP

Totalvariables:

4

Nonlinearvariables:

0

Integervariables:

0

Totalconstraints:

9

Nonlinearconstraints:

0

Totalnonzeros:

18

Nonlinearnonzeros:

0

 

VariableValueReducedCost

X113.000000.000000

X215.000000.000000

X315.000000.000000

X49.0000000.000000

RowSlackorSurplusDualPrice

1294.0000-1.000000

20.000000-6.000000

30.0000000.000000

43.0000000.000000

50.0000001.000000

64.0000000.000000

70.0000001.000000

80.000000-1.000000

94.0000000.000000

可得x1=13,x2=15,x3=15,x4=9;

即第一季度生产13万盒,

第二季度生产15万盒,

第三季度15万盒,

第四季度为9万盒。

总的支出费用为294万元。

(3)设第一季度加班生产的产品为x11盒,

第一季度加班生产的产品为x21盒,

第一季度加班生产的产品为x31盒,

第一季度加班生产的产品为x41盒,

则可以得到新的lingo程序:

min=8*x1+9*x11+7*x2+8*x21+7*x3+8.2*x31+6*x4+7.2*x41-78;

x1+x11+x2+x21+x3+x31+x4+x41=52;

x1<=13;

x1+x11>=10;

x2<=15;

x1+x2+x11+x21>=24;

x3<=15;

x1+x2+x3+x11+x21+x31>=44;

x4<=13;

运行程序可得:

Globaloptimalsolutionfound.

Objectivevalue:

292.0000

Infeasibilities:

0.000000

Totalsolveriterations:

2

ModelClass:

LP

Totalvariables:

8

Nonlinearvariables:

0

Integervariables:

0

Totalconstraints:

9

Nonlinearconstraints:

0

Totalnonzeros:

32

Nonlinearnonzeros:

0

 

VariableValueReducedCost

X113.000000.000000

X110.0000001.000000

X215.000000.000000

X211.0000000.000000

X315.000000.000000

X310.0000000.2000000

X48.0000000.000000

X410.0000001.200000

RowSlackorSurplusDualPrice

1292.0000-1.000000

20.000000-6.000000

30.0000000.000000

43.0000000.000000

50.0000001.000000

65.0000000.000000

70.0000001.000000

80.000000-2.000000

95.0000000.000000

则可以得出新的生产方案为:

则可得x1=13,x21=1,x2=15,x3=15,x4=8;

即第一季度生产13万盒,

第二季度生产15万盒,

第二季度加班生产的产品为1万盒,

第三季度15万盒,

第四季度为8万盒。

(4)设第一季度加班生产的产品为x11盒,

第一季度加班生产的产品为x21盒,

第一季度加班生产的产品为x31盒,

第一季度加班生产的产品为x41盒,

可以得到新的lingo程序:

min=8*x1+9*x11+7*x2+8*x21+7*x3+8.2*x31+6*x4+7.2*x41-77;

x1+x11+x2+x21+x3+x31+x4+x41=52;

x1<=13;

x1+x11>=10;

x2<=15;

x1+x2+x11+x21>=24;

x3<=15;

x1+x2+x3+x11+x21+x31>=44;

x4<=13;

Globaloptimalsolutionfound.

Objectivevalue:

293.0000

Infeasibilities:

0.000000

Totalsolveriterations:

2

ModelClass:

LP

Totalvariables:

8

Nonlinearvariables:

0

Integervariables:

0

Totalconstraints:

9

Nonlinearconstraints:

0

Totalnonzeros:

32

Nonlinearnonzeros:

0

 

VariableValueReducedCost

X113.000000.000000

X110.0000001.000000

X215.000000.000000

X211.0000000.000000

X315.000000.000000

X310.0000000.2000000

X48.0000000.000000

X410.0000001.200000

RowSlackorSurplusDualPrice

1293.0000-1.000000

20.000000-6.000000

30.0000000.000000

43.0000000.000000

50.0000001.000000

65.0000000.000000

70.0000001.000000

80.000000-2.000000

95.0000000.000000

3.指派问题

解:

由此转换问题的解决方案分别为

(1)甲(worker1)(worker5)完成两项任务,乙(worker2)丙(worker3)丁(worker4)各完成一项任务;可以得出如下的lingo程序:

model:

sets:

worker/w1..w5/;

job/j1..j5/;

links(worker,job):

c,x;

endsets

data:

c=2529314237

3938262033

3427284032

2442362345

2529314237;

enddata

min=@sum(links:

c*x);

@for(worker(i):

@sum(job(j):

x(i,j))=1);

@for(job(j):

@sum(worker(i):

x(i,j))=1);

@for(links:

@bin(x));

End

运行程序后可得:

Globaloptimalsolutionfound.

Objectivevalue:

135.0000

Objectivebound:

135.0000

Infeasibilities:

0.000000

Extendedsolversteps:

0

Totalsolveriterations:

0

ModelClass:

PILP

Totalvariables:

25

Nonlinearvariables:

0

Integervariables:

25

Totalconstraints:

11

Nonlinearconstraints:

0

Totalnonzeros:

75

Nonlinearnonzeros:

0

 

VariableValueReducedCost

C(W1,J1)25.000000.000000

C(W1,J2)29.000000.000000

C(W1,J3)31.000000.000000

C(W1,J4)42.000000.000000

C(W1,J5)37.000000.000000

C(W2,J1)39.000000.000000

C(W2,J2)38.000000.000000

C(W2,J3)26.000000.000000

C(W2,J4)20.000000.000000

C(W2,J5)33.000000.000000

C(W3,J1)34.000000.000000

C(W3,J2)27.000000.000000

C(W3,J3)28.000000.000000

C(W3,J4)40.000000.000000

C(W3,J5)32.000000.000000

C(W4,J1)24.000000.000000

C(W4,J2)42.000000.000000

C(W4,J3)36.000000.000000

C(W4,J4)23.000000.000000

C(W4,J5)45.000000.000000

C(W5,J1)25.000000.000000

C(W5,J2)29.000000.000000

C(W5,J3)31.000000.000000

C(W5,J4)42.000000.000000

C(W5,J5)37.000000.000000

X(W1,J1)0.00000025.00000

X(W1,J2)1.00000029.00000

X(W1,J3)0.00000031.00000

X(W1,J4)0.00000042.00000

X(W1,J5)0.00000037.00000

X(W2,J1)0.00000039.00000

X(W2,J2)0.00000038.00000

X(W2,J3)1.00000026.00000

X(W2,J4)0.00000020.00000

X(W2,J5)0.00000033.00000

X(W3,J1)0.00000034.00000

X(W3,J2)0.00000027.00000

X(W3,J3)0.00000028.00000

X(W3,J4)0.00000040.00000

X(W3,J5)1.00000032.00000

X(W4,J1)0.00000024.00000

X(W4,J2)0.00000042.00000

X(W4,J3)0.00000036.00000

X(W4,J4)1.00000023.00000

X(W4,J5)0.00000045.00000

X(W5,J1)1.00000025.00000

X(W5,J2)0.00000029.00000

X(W5,J3)0.00000031.00000

X(W5,J4)0.00000042.00000

X(W5,J5)0.00000037.00000

RowSlackorSurplusDualPrice

1135.0000-1.000000

20.0000000.000000

30.0000000.000000

40.0000000.000000

50.0000000.000000

60.0000000.000000

70.0000000.000000

80.0000000.000000

90.0000000.000000

100.0000000.000000

110.0000000.000000

可以得出:

甲完成A、B两个任务,乙完成C任务,丙完成E任务,丁完成D任务,花费的时间最短时间为135。

(2)乙(worker2)(worker5)完成两项任务,甲(worker1)丙(worker3)丁(worker4)各完成一项任务;可以得出如下的lingo程序:

model:

sets:

worker/w1..w5/;

job/j1..j5/;

links(worker,job):

c,x;

endsets

data:

c=2529314237

3938262033

3427284032

2442362345

3938262033;

enddata

min=@sum(links:

c*x);

@for(worker(i):

@sum(job(j):

x(i,j))=1);

@for(job(j):

@sum(worker(i):

x(i,j))=1);

@for(links:

@bin(x));

End

运行程序可以得出:

Globaloptimalsolutionfound.

Objectivevalue:

131.0000

Objectivebound:

131.0000

Infeasibilities:

0.000000

Extendedsolversteps:

0

Totalsolveriterations:

0

ModelClass:

PILP

Totalvariables:

25

Nonlinearvariables:

0

Integervariables:

25

Totalconstraints:

11

Nonlinearconstraints:

0

Totalnonzeros:

75

Nonlinearnonzeros:

0

 

VariableValueReducedCost

C(W1,J1)25.000000.000000

C(W1,J2)29.000000.000000

C(W1,J3)31.000000.000000

C(W1,J4)42.000000.000000

C(W1,J5)37.000000.000000

C(W2,J1)39.000000.000000

C(W2,J2)38.000000.000000

C(W2,J3)26.000000.000000

C(W2,J4)20.000000.000000

C(W2,J5)33.000000.000000

C(W3,J1)34.000000.000000

C(W3,J2)27.000000.000000

C(W3,J3)28.000000.000000

C(W3,J4)40.000000.000000

C(W3,J5)32.000000.000000

C(W4,J1)24.000000.000000

C(W4,J2)42.000000.000000

C(W4,J3)36.000000.000000

C(W4,J4)23.000000.000000

C(W4,J5)45.000000.000000

C(W5,J1)39.000000.000000

C(W5,J2)38.000000.000000

C(W5,J3)26.000000.000000

C(W5,J4)20.000000.000000

C(W5,J5)33.000000.000000

X(W1,J1)0.00000025.00000

X(W1,J2)1.00000029.00000

X(W1,J3)0.00000031.00000

X(W1,J4)0.00000042.00000

X(W1,J5)0.00000037.00000

X(W2,J1)0.00000039.00000

X(W2,J2)0.00000038.00000

X(W2,J3)1.00000026.00000

X(W2,J4)0.00000020.00000

X(W2,J5)0.00000033.00000

X(W3,J1)0.00000034.00000

X(W3,J2)0.00000027.00000

X(W3,J3)0.00000028.00000

X(W3,J4)0.00000040.00000

X(W3,J5)1.00000032.00000

X(W4,J1)1.00000024.00000

X(W4,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 职业规划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1