页面置换.docx

上传人:b****5 文档编号:6065662 上传时间:2023-01-03 格式:DOCX 页数:12 大小:97.76KB
下载 相关 举报
页面置换.docx_第1页
第1页 / 共12页
页面置换.docx_第2页
第2页 / 共12页
页面置换.docx_第3页
第3页 / 共12页
页面置换.docx_第4页
第4页 / 共12页
页面置换.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

页面置换.docx

《页面置换.docx》由会员分享,可在线阅读,更多相关《页面置换.docx(12页珍藏版)》请在冰豆网上搜索。

页面置换.docx

页面置换

淮海工学院计算机科学系

实验报告书

课程名:

《操作系统原理》

题目:

虚拟存储器管理

页面置换算法模拟实验

班级:

软件102班

学号:

111003232

姓名:

 

一、实验目的与要求

1.目的:

请求页式虚存管理是常用的虚拟存储管理方案之一。

通过请求页式虚存管理中对页面置换算法的模拟,有助于理解虚拟存储技术的特点,并加深对请求页式虚存管理的页面调度算法的理解。

2.要求:

本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。

其中虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。

要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。

程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。

二、实验说明

1.设计中虚页和实页的表示

本设计利用C语言的结构体来描述虚页和实页的结构。

pn

pfn

time

pn

pfn

next

虚页结构实页结构

在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。

pfn代表实页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页的实页号pfn。

time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。

在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。

pfn代表实页号,取值范围(0—n-1)由动态指派的实页数n所决定。

next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。

2.关于缺页次数的统计

为计算命中率,需要统计在20次的虚页访问中命中的次数。

为此,程序应设置一个计数器count,来统计虚页命中发生的次数。

每当所访问的虚页的pfn项值不为-1,表示此虚页已被装入某实页内,此虚页被命中,count加1。

最终命中率=count/20*100%。

3.LRU算法中“最近最久未用”页面的确定

为了能找到“最近最久未用”的虚页面,程序中可引入一个时间计数器countime,每当要访问一个虚页面时,countime的值加1,然后将所要访问的虚页的time项值设置为增值后的当前countime值,表示该虚页的最后一次被访问时间。

当LRU算法需要置换时,从所有已分配实页的虚页中找出time值为最小的虚页就是“最近最久未用”的虚页面,应该将它置换出去。

4.算法中实页的组织

因为能分配的实页数n是在程序运行时由用户动态指派的,所以应使用链表组织动态产生的多个实页。

为了调度算法实现的方便,可以考虑引入free和busy两个链表:

free链表用于组织未分配出去的实页,首指针为free_head,初始时n个实页都处于free链表中;busy链表用于组织已分配出去的实页,首指针为busy_head,尾指针为busy_tail,初始值都为null。

当所要访问的一个虚页不在实页中时,将产生缺页中断。

此时若free链表不为空,就取下链表首指针所指的实页,并分配给该虚页。

若free链表为空,则说明n个实页已全部分配出去,此时应进行页面置换:

对于FIFO算法要将busy_head所指的实页从busy链表中取下,分配给该虚页,然后再将该实页插入到busy链表尾部;对于LRU算法则要从所有已分配实页的虚页中找出time值为最小的虚页,将该虚页从装载它的那个实页中置换出去,并在该实页中装入当前正要访问的虚页。

三、主要程序清单

#include

#include

usingnamespacestd;

#defineM20

structVP//虚页数据结构

{

intpn;//虚页号

intpfn;//实页号

inttime;//对虚页最近访问时间

}VP[10];

structRP//实页数据结构

{

intpn;//虚页号

intpfn;//实页号

structRP*next;//

}RP[10];

inta[M];

intcount=0;

intcounttime=0;

intMemoryStatus[10][M];

intNotInMemory[M];

structRP*Free,*Free_head,*Busy,*Busy_tail,*Busy_head,*temp;

voidinit(intn)

{

inti,j;

for(i=0;i<10;i++)//虚页初始化

{

VP[i].pn=i;

VP[i].pfn=-1;

VP[i].time=0;

}

for(i=0;i

{

RP[i].pfn=i;

RP[i].pn=-1;

RP[i].next=NULL;

}

Free=&RP[0];

Free->next=&RP[1];

for(i=1;i

{

RP[i].next=&RP[i+1];

}

RP[n-1].next=NULL;

Free_head=Free;

Busy=NULL;

Busy_head=NULL;

Busy_tail=NULL;

for(i=0;i

{

for(j=0;j

{

MemoryStatus[i][j]=-1;

}

}

for(i=0;i

{

NotInMemory[i]=1;

}

}

voidfifo(intn)

{

inti,j,k,currentpage;

for(i=0;i

{

currentpage=a[i];

if(VP[currentpage].pfn!

=-1)

{

for(j=0;j

{

MemoryStatus[j][i]=MemoryStatus[j][i-1];

}

NotInMemory[i]=0;

}

else

{

count=count+1;

if(Free!

=NULL)

{

temp=Free_head;

Free_head=Free_head->next;

Free=Free_head;

VP[currentpage].pfn=temp->pfn;

temp->pn=currentpage;

temp->next=NULL;

if(Busy==NULL)

{

Busy=temp;

Busy_head=Busy;

Busy_tail=Busy;

}

else

{

Busy_tail->next=temp;

Busy_tail=temp;

}

for(k=0;k

{

MemoryStatus[k][i]=MemoryStatus[k][i-1];

}

MemoryStatus[temp->pfn][i]=currentpage;

}

else

{

temp=Busy;

Busy_head=Busy->next;

Busy=Busy_head;

VP[temp->pn].pfn=-1;

VP[currentpage].pfn=temp->pfn;

temp->pn=currentpage;

temp->next=NULL;

Busy_tail->next=temp;

Busy_tail=temp;

for(k=0;k

{

MemoryStatus[k][i]=MemoryStatus[k][i-1];

}

MemoryStatus[temp->pfn][i]=currentpage;

}

}

}

}

voidlru(intn)

{

count=0;

inti,j,k,currentpage;

intmin,y;

intcounttime=0;

for(i=0;i

{

currentpage=a[i];

counttime++;

VP[currentpage].time=counttime;

if(VP[currentpage].pfn!

=-1)

{

VP[currentpage].time=counttime;

for(j=0;j

{

MemoryStatus[j][i]=MemoryStatus[j][i-1];

}

NotInMemory[i]=0;

}

else

{

count++;

if(Free!

=NULL)

{

temp=Free_head;

Free_head=Free_head->next;

Free=Free_head;

VP[currentpage].pfn=temp->pfn;

temp->pn=currentpage;

temp->next=NULL;

if(Busy==NULL)

{

Busy=temp;

Busy_head=Busy;

Busy_tail=Busy;

}

else

{

Busy_tail->next=temp;

Busy_tail=temp;

}

for(k=0;k

{

MemoryStatus[k][i]=MemoryStatus[k][i-1];

}

MemoryStatus[temp->pfn][i]=currentpage;

}

else

{

min=30;

for(j=0;j<10;j++)

if(VP[j].pfn!

=-1&&min>VP[j].time)

{

min=VP[j].time;

y=j;

}

Free_head=&RP[VP[y].pfn];

VP[y].pfn=-1;

Free_head->next=NULL;

VP[currentpage].pfn=Free_head->pfn;

VP[currentpage].time=counttime;

Free=Free_head->next;

for(k=0;k

{

MemoryStatus[k][i]=MemoryStatus[k][i-1];

}

MemoryStatus[Free_head->pfn][i]=currentpage;

}

}

}

}

voidprint(intn)

{

inti,j;

doublef;

for(i=0;i

{

for(j=0;j

{

if(NotInMemory[j]==1)

printf("|%3d",MemoryStatus[i][j]);

else

printf("|%3c",32);

}

}

printf("\n缺页数为:

%3d",count);

f=count/20.0*100;

cout<

cout<<"缺页率:

"<

}

voidmain()

{

intn,i;

cout<<"请输入实页数:

";

cin>>n;

for(i=0;i

{

a[i]=rand()%10;

cout<<"|"<

}

init(n);

cout<

cout<<"FIFO置换算法:

"<

fifo(n);

print(n);

cout<

init(n);

cout<<"LRU置换算法:

"<

lru(n);

print(n);

cout<

}

四、程序运行结果

 

五、实验体会

本次实验原理很容易理解,但是编码实现有点难度,先进先出算法实现比较简单,之前编好了。

但是,和老师给的输出示例有点不同,然后有改了一下。

在实现了先进先出算法后,编写最近最久为使用算法感觉比较简单,但是实现的时候比较纠结。

counttime变量我把他放到lru(intn)函数的if(Free==NULL)条件中了,结果置换的时候老是错位,纠结了好久。

没办发用挑食才找出这个问题。

总的来说,这次遇到的问题在一次体醒了我,写代码时逻辑要足够的清晰。

还有在将两种算法封装后在主函数中调用时lru算法总是不能输出想要的结果。

但是,单独运行lru算法输出的结果又是正确的。

经过反复测试,发现在调用lru时,NotInMemory[],MemoryStatus[][]以及count的值都因为之前调用过fifo算法而改变了。

所以在调用fifo算法之后调用lru算法,输出的结果有错误。

因此,我在调用fifo算法和调用lru算法之间加了初始化函数,这样运行结果就OK了。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1