一元二次方程全章共21课教案人教版.docx

上传人:b****6 文档编号:6046838 上传时间:2023-01-03 格式:DOCX 页数:34 大小:31.52KB
下载 相关 举报
一元二次方程全章共21课教案人教版.docx_第1页
第1页 / 共34页
一元二次方程全章共21课教案人教版.docx_第2页
第2页 / 共34页
一元二次方程全章共21课教案人教版.docx_第3页
第3页 / 共34页
一元二次方程全章共21课教案人教版.docx_第4页
第4页 / 共34页
一元二次方程全章共21课教案人教版.docx_第5页
第5页 / 共34页
点击查看更多>>
下载资源
资源描述

一元二次方程全章共21课教案人教版.docx

《一元二次方程全章共21课教案人教版.docx》由会员分享,可在线阅读,更多相关《一元二次方程全章共21课教案人教版.docx(34页珍藏版)》请在冰豆网上搜索。

一元二次方程全章共21课教案人教版.docx

一元二次方程全章共21课教案人教版

 

第十二章一元二次方程

第1课一元二次方程

一、授课目标

1.使学生理解并能够掌握整式方程的定义.

2.使学生理解并能够掌握一元二次方程的定义.

3.使学生理解并能够掌握一元二次方程的一般表达式以及各种特别形式.

二、授课要点、难点

要点:

一元二次方程的定义.

难点:

一元二次方程的一般形式及其二次项系数、一次项系数和常数项的鉴识.

三、授课过程

复习提问

1.什么叫做方程?

什么叫做一元一次方程?

2.指出下面哪些方程是已学过的方程?

分别叫做什么方程?

(l)3x+4=l;

(2)6x-5y=7;

 

3.结合上述相关方程讲解什么叫做“元”,什么叫做“次”.

引入新课

1.方程的分类:

经过上面的复习,引导学生答出:

学过的几类方程是

 

没学过的方程是

x2-70x+825=0,x(x+5)=150.

这类“两边都是关于未知数的整式的方程,叫做整式方程.”而在整式方程中,“只含

有一个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程.”

据此得出复习中学生未学过的方程是

(4)一元二次方程:

x2-70x+825=0,x(x+5)=150.

同时指导学生把学过的方程分为两大类:

 

1

 

2.一元二次方程的一般形式

注意引导学生考虑方程

x2-70x+825=0

和方程x(x+5)=150,即x2+5x=150,

可化为:

x2+5x-150=0.

从而引导学生认识到:

任何一个一元二次方程,经过整理都能够化为

ax2+bx+c=0(a≠0)

的形式.并称之为一元二次方程的一般形式.重申,其中ax2,bx,c分别称为二次项、

一次项、常数项;a,b分别称为二次项系数、一次项系数.要特别注意:

二次项系数a是

不等于0的实数(a=0时,方程化为bx+c=0,不再是二次方程了);b,c可为任意实数.

例把方程5x(x+3)=3(x-1)+8化成一般形式.并写出它的二次项系数、一次项系数及常

数项.

讲解例题

 

课堂练习P5-61、2

课堂小结

 

1.方程分为两大类:

鉴识整式方程与分式方程的要点是看分母中可否含有未知数;鉴识一元一次方程,一元

二次方程的要点是看方程化为一般形式后,未知数的最高次数是一次仍是二次.

2.一元二次方程的定义:

一个整式方程,经化简形成只含有一个未知数且未知数的最

高次数是2,则这样的整式方程称一元二次方程.其一般形式是ax2+bx+c=0(a≠0),其中b,

c均可为任意实数,而a不能够够等于零.

作业:

教材中相关习题.

 

第2课一元二次方程的解法

(一)

一、授课目标

1.使学生掌握用直接开平方法解一元二次方程.

2.引导学生经过特别情况下的解方程,小结、归纳出解一元二次方程ax2+c=0(a>0,c

<0)的方法.

二、授课要点、难点

要点:

正确地求出方程的根.

难点:

正确地表示方程的两个根.

三、授课过程

复习过程

回忆数的开方一章中的知识,请学生回答以下问题,并说明解决问题的依照.

求以下各式中的x:

1.x2=225;2.x2-169=0;3.36x2=49;4.4x2-25=0.

回答解题过程中的依照.

 

解题的依照是:

一个正数有两个平方根,这两个平方根互为相反数.

 

2

 

即一般地,若是一个数的平方等于a(a≥0),那么这样的数有两个,它们是互为相反

数.

引入新课

我们已经学过了一些方程知识,那么上述方程属于什么方程呢?

新课

例1解方程x2-4=0.

解:

先移项,得x2=4.

 

即x1=2,x2=-2.

这类解一元二次方程的方法叫做直接开平方法.

例2解方程(x+3)2=2.

讲解例2

 

练习:

P71、2

小结

1.本节主要学习了简单的一元二次方程的解法——直接法.

2

2.直接法适用于ax+c=0(a>0,c<0)型的一元二次方程.

作业:

习题12.1A组1、2

 

第3课一元二次方程的解法

(二)

一、授课目标

1.使学生掌握用配方法解一元二次方程的方法.

2.使学生能够运用合适变形的方法,转变方程为易于用配方法求解的形式,来解某些

一元二次方程.并由此领悟转变的思想.

二、授课要点、难点

要点:

掌握配方的法规.

难点:

凑配的方法与技巧.

三、授课过程

复习过程

用开平方法解以下方程:

(1)x2=441;

(2)196x2-49=0;

 

引入新课

我们知道,形如x2-A=0的方程,可变形为x2=A(A≥0),再依照平方根的意义,用直接

开平方法求解.那么,我们可否将形如ax2+bx+c=0(a>0)的一类方程,化为上述形式求解呢?

这正是我们这节课要解决的问题.

新课

我们研究方程x2+6x+7=0的解法:

将方程视为:

x2+2·x·3=-7,即x2+2·x·3+32=32-7,∴(x+3)2=2,

 

3

 

这类解一元二次方程的方法叫做配方法.这类方法的特点是:

先把方程的常数项移到方程的右边,再把左侧配成一个圆满平方式,若是右边是非负数,就可以进一步经过直接开平方法来求出它的解.

 

例1解方程x2-4x-3=0.

配方法解之.在解的过程中,介绍配方的法规.

例2解方程2x2+3=7x.

 

练习:

P101、2

小结:

应用配方法解一元二次方程ax2+bx+c=0(a≠0)的要点是:

(1)化二次项系数为1;

(2)移项,使方程左侧为二次项和一次项,右边为常数;

(3)方程两边各加前一次项系数一半的平方;作业:

习题12.13

 

第4课一元二次方程的解法(三)

一、授课目标

1.使学生掌握一般一元二次方程的求根公式的推导过程,并由此培养学生的剖析、综

合和计算能力.

2.使学生掌握公式法解一元二次方程的方法.

二、授课要点、难点

要点:

要修业生正确运用公式解方程.

难点:

求根公式的推导过程.

三、授课过程

复习提问

2

提问:

当x=c时,c≥0时方程才有解,为什么?

 

(1)x2-8x=20;

(2)2x

2-6x-1=0.

 

引入新课

我们思虑用配方法解一般形式的一元二次方程,应怎样配方来进行求解?

新课

2

(引导学生议论)用配方法解一元二次方程ax+bx+c=0(a≠0)的步骤.

 

把常数项移到方程右边,并两边各加前一次项系数的一半的平方,得

 

4

 

(a≠0)的求根公式.用此公式解一元二次方程的方法叫做公式法.

应用求根公式解一元二次方程的要点在于:

(1)将方程化为一般形式ax2+bx+c=0(a≠0);

(2)将各项的系数a,b,c代入求根公式.

例1解方程x2-3x+2=0.

讲解例1

 

例2解方程2x2+7x=4.

讲解例2

 

练习P141

 

小结

1.本节课我们推导出了一元二次方程ax2+bx+c=0(a≠0)的求根公式,即

 

2

要要点让学生注意到应用公式的大前提,即b-4ac≥0.

 

作业:

习题12.1A组4

 

第5课一元二次方程的解法(四)

一、授课目标

使学生进一步熟练掌握利用求根公式解一元二次方程的方法.

二、授课要点、难点

要点:

用求根公式求一元二次方程的根的方法.

难点:

含有字母参数的一元二次方程的公式解法.

三、授课过程

复习提问

 

5

 

1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是什么?

2.求根公式成立的前提是什么?

 

引入新课

在用求根公式解一元二次方程时,可否会遇到一些特别现象?

可看下述几例.

新课

 

讲解例3

 

例4解方程x2+x-1=0.(精确到0.001)

讲解例4

 

例5解关于x的方程x2-m(3x-2m+n)-n2=0.

讲解例5

 

练习:

P142

小结:

 

2.在解含有字母系数的一元二次方程时,应注意化方程为一般形式,确定b2-4ac≥0后,

再用求根公式解之.

 

作业习题12.1A组56

 

第6课一元二次方程的解法(五)

一、授课目标

使学生掌握应用因式分解法解某些系数较为特其他一元二次方程的方法.

二、授课要点、难点

要点:

用因式分解法解一元二次方程.

难点:

将方程化为一般形式后,对左侧二次三项式的因式分解.

三、授课过程

复习提问

1.在初一时,我们学过将多项式分解因式的哪些方法?

 

2.方程x2=4的解是多少?

 

引入新课

2

方程x=4还有其他解法吗?

 

众所周知,方程x2=4还可用公式法解.

 

6

 

此法要比开平方法繁冗.本课,我们将介绍一种较为简捷的解一元二次方程的方法——因式分解法.

我们仍以方程x2=4为例.

2

移项,得x-4=0,

2

对x-4分解因式,得

(x+2)(x-2)=0.

 

我们知道:

∴x+2=0,x-2=0.

即x1=-2,x2=2.

由上述过程我们知道:

当方程的一边能够分解成两个一次因式而另一边等于0时,即可

解之.这类方法叫做因式分解法.

例1解以下方程:

(1)x2-3x-10=0;

(2)(x+3)(x-1)=5.

在讲例1

(1)时,要注意讲应用十字相乘法分解因式;

讲例1

(2)时,应突出讲将方程整理成一般形式,今后再分解因式解之.

例2解以下方程:

(1)3x(x+2)=5(x+2);

(2)(3x+1)2-5=0.

在讲本例

(1)时,要突出讲移项后提取公因式,形成(x+2)(3x-5)=0后求解;

 

再利用平方差公式因式分解后求解.

注意:

在讲完例1、例2后,可经过比较来表达因式分解的方法应“因题而宜”.

例3解以下方程:

(1)3x2-16x+5=0;

(2)3(2x2-1)=7x.

依照教材中的解法介绍,此类题需用十字相乘法解之.

练习:

P201、2

小结

对上述三例的解法可做以下总结:

因式分解法解一元二次方程的步骤是

1.将方程化为一般形式;

2.把方程左侧的二次三项式分解成两个一次式的积;(用初一学过的分解方法)

3.使每个一次因式等于0,获取两个一元一次方程;

4.解所得的两个一元一次方程,获取原方程的两个根.

 

作业:

习题12.2A组1

 

第7课一元二次方程的解法(六)

一、授课目标

使学生进一步牢固掌握一元二次方程的开平方法、配方法、公式法和因式分解法.

二、授课要点、难点

 

7

 

要点:

一元二次方程的四种常见解法的复习.

难点:

选择合适的方法解一元二次方程.

三、授课过程

例1解以下方程:

 

讲解例1

 

例2解以下方程:

(1)5x(5x-2)=-1;

(2)(x-2)2+10(x-2)+16=0.

讲解例2

 

例3用合适的方法解以下方程:

 

讲解例3

 

小结

在解一元二次方程时,要注意依照方程的特点,选择合适的方法灵便的解决问题.

作业习题12.2A组2

 

第8课一元二次方程的根的鉴识式

(一)

一、授课目标

1.使学生理解并掌握一元二次方程的根的鉴识式.

2.使学生掌握不解方程,运用鉴识式判断一元二次方程根的情况.

二、授课要点、难点

要点:

一元二次方程根的鉴识式的应用.

难点:

一元二次方程根的鉴识式的推导.

三、授课过程

复习提问

1.一元二次方程的一般形式及其根的鉴识式是什么?

2.用公式法求出以下方程的解:

222

(1)3x+x-10=0;

(2)x-8x+16=0;(3)2x-6x+5=0.

 

经过上述一组题,让学生回答出:

一元二次方程的根的情况有三种,即有两个不相等的实数根;两个相等的实数根;没有实数根.

 

8

 

接下来向学生提出问题:

是什么条件决定着一元二次方程的根的情况?

这条件与方程的根之间又有什么关系呢?

可否不解方程就可以明确方程的根的情况?

这正是我们本课要商议的课题.(板书籍课标题)

新课

2

先议论上述三个小题中b-4ac的情况与其根的联系.再做以下推导:

2

对任意一元二次方程ax+bx+c=0(a≠0),可将其变形为

 

∵a≠0,∴4a2>0.

由此可知b2-4ac的值的“三岐性”,即正、零、负直接影响着方程的根的情况.

(1)当b2-4ac>0时,方程右边是一个正数.

 

(2)当b2-4ac=0时,方程右边是0.

 

经过以上议论,总结出:

一元二次方程ax2+bx+c=0的根的情况可由b2-4ac来判断.故称b2-4ac是一元二次方程ax2+bx+c=0的根的鉴识式,平时用“△”来表示.

综上所述,一元二次方程

ax2+bx+c=0(a≠0)

当△>0时,有两个不相等的实数根;

当△=0时,有两个相等的实数根;

当△<0时,没有实数根.反过来也成立.

注:

“△”读作“delta”.

例不解方程,鉴识以下方程根的情况:

(1)2x2+3x-4=0;

(2)16y2+9=24y;(3)5(x2+1)-7x=0.

剖析:

要想确定上述方程的根的情况,只需算出“△”,确定它的符号情况即可.

练习:

P26123

小结

应用鉴识式解题应注意以下几点:

1.应先把已知方程化为一元二次方程的一般形式,为应用鉴识式创立条件.

2.不用解方程,只须先求出△,确定其符号即可,详尽数值不用然要计算出来.

3.其抗命题也是成立的.

作业:

习题12.3A组1--4

 

9

 

第9课一元二次方程的根的鉴识式

(二)

一、授课目标

经过对含有字母系数方程的根的议论,培养学生运用一元二次方程根的鉴识式的论证能力和逻辑思想能力.培养学生思虑问题的灵便性和严实性.

二、授课要点、难点

要点:

牢固掌握根的鉴识式的应用能力.

难点:

利用根的鉴识式进行相关证明.

三、授课过程

复习提问

1.写出一元二次方程ax2+bx+c=0的根的鉴识式.

2.方程ax2+bx+c=0(a≠0)的根有哪几种情况?

怎样判断?

引入新课

教材中“想一想”提出了以下问题:

已知关于x的方程

2x2-(4k+1)x+2k2-1=0,

其中△=[-(4k+1)]

2-4×2×(2k2-1)

=16k2+8k+1-16k2+8

=8k+9.

想一想,当k取什么值时,

(1)方程有两个不相等的实数根;

(2)方程有两个相等的实数根;(3)方程没有实数根.

新课

上述问题,实际上是这样一道题目.

例1当k取什么值时,关于x的方程2x2-(4k+1)x+2k2-1=0

(1)有两个不相等的实数根;

(2)有两个相等实数根;(3)方程没有实数根.讲解例1

 

例2求证关于x的方程(k2+1)x2-2kx+(k2+4)=0没有实数根.

剖析:

要证明上述方程没有实数根,只须证明其根的鉴识式△<0即可.

 

例3证明关于x的方程(x-1)(x-2)=m2有两个不相等的实数根.讲解例3

 

例4已知a,b,c是△ABC的三边的长,求证方程a2x2-(a2+b2-c2)x+b2=0没有实数根.

讲解例4

 

练习:

1.若m≠n,求证关于x的方程2x2+2(m+n)x+m2+n2=0无实数根.

2.求证:

关于x的方程x2+(2m+1)x-m2+m=0有两个不相等的实数根.

小结

2

解决判断一元二次方程ax+bx+c=0的方程根的情况应依照以下步骤进行:

 

2.用配方法将△恒等变形(或变成易于观察其符号的情况);

3.判断△的符号,得出结论.

作业:

习题12.3B组

 

10

 

第10课一元二次方程的根与系数的关系

(一)

一、授课目标

1.使学生掌握一元二次方程根与系数的关系(即韦达定理),并学会初步运用.

2.培养学生剖析、观察以及利用求根公式进行推理论证的能力.

二、授课要点、难点

要点:

韦达定理的推导和初步运用.

难点:

定理的应用.

三、授课过程

复习提问

1.一元二次方程ax2+bx+c=0的求根公式应怎样表述?

2.上述方程两根之和等于什么?

两根之积呢?

 

新课

一元二次方程ax2+bx+c=0(a≠0)的两根为

 

由此得出,一元二次方程的根与系数之间存在以下关系:

(又称“韦达定理”)

 

若是ax2+bx+c=0(a≠0)的两个根是x1,x2,那么

我们再来看二次项系数为1的一元二次方程x2+px+q=0的根与系数的关系.

 

得出:

若是方程x2+px+q=0的两根是x1,x2,那么x1+x2=-p,x1x2=q.

由x1+x2=-p,x1x2=q可知p=-(x1+x2),q=x1·x2,

∴方程x2+px+q=0,

即x2-(x1+x2)x+x1·x2=0.

这就是说,以两个数x1,x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1·x2=0.

例1已知方程5x2+kx-6=0的一个根是2,求它的另一根及k的值.讲解例1

 

练习P3212

小结

1.本节课主要学习了一元二次方程根与系数关系定理,应在应用过程中熟记定理.

2.要掌握定理的两个应用:

一是不解方程直接求方程的两根之和与两根之积;二是已

知方程一根求另一根及系数中字母的值.

作业:

习题12.4A组1

 

11

 

第11课一元二次方程的根与系数的关系

(二)

一、授课目标

1.复习牢固一元二次方程根与系数关系的定理.

2.学习定理的又一应用,即“已知方程,求方程两根的代数式的值”.

3.经过应用定理,培养学生剖析问题和综合运用所学知识解决问题的能力.

二、授课要点、难点

要点:

已知方程求关于根的代数式的值.

难点:

用两根之和与两根之积表示含有两根的各种代数式.

三、授课过程

复习提问

1.一元二次方程根与系数关系的定理是什么?

2.以下各方程两根之和与两根之积各是什么?

(1)x2-3x-18=0;

(2)x2+5x+4=5;

(3)3x2+7x+2=0;(4)2x2+3x=0.

引入新课

考虑以下两个问题;

1.方程5x2+kx-6=0两根互为相反数,k为什么值?

 

2.方程2x2+7x+k=0的两根中有一个根为0,k为什么值?

 

我们能够从这两题中看出,根与系数之间的运算是十分巧妙的.本课我们将深入商议这

一问题.

新课

例2利用根与系数的关系,求一元二次方程2x2+3x-1=0两根的

(1)平方和;

(2)倒数

和.

 

在讲此题时,要突出讲使用韦达定理,追求x2+px+q=0中的p,q的值.

 

例4已知两个数的和等于8,积等于9,求这两个数.

这是一道“根与系数的关系定理”的应用题,要注意讲此类题的解题步骤:

(1)运用定理构造方程;

(2)解方程求两根;(3)得出所欲求的两个数.练习:

P323、4、5

小结

本课学习了利用根与系数关系解决三类问题的方法:

(1)已知方程求两根的各种代数式

的值;

(2)已知两根的代数式的值,构造新方程;(3)已知两根的和与积,构造方程,解方程,

求出与根对应的数.

作业:

习题12.4A组2、3、4

 

12

 

第12课二次三项式的因式分解(公式法)

(一)

一、授课目标

1.使学生理解二次三项式的意义及解方程和因式分解的关系.

2.使学生掌握用求根法在实数范围内将二次三项式分解国式.

二、授课要点、难点

要点:

用求根法分解二次三项式.

难点:

方程的同解变形与多项式的恒等变形的差异.

三、授课过程

复习提问

解方程:

1.x2-x-6

=0;2.3x2-11x+10=0;3.4x2+8x-1=0.

引入新课

在解上述方程时,第

1,2题均可用十字相乘法分解因式,迅速求解.而第

3题则只有

采用其他方法.此题给我们启示,用十字相乘法分解二次三项式,

有时是无法做到的.可否

存在新的方法能分解二次三项式呢?

3个方程的求解给我们以启示.

新课

二次三项式ax2+bx+c(a≠0),我们已经能够用十字相乘法分解一些简单形式.

下面我们

介绍利用一元二次方程的求根公式将之分解的方法.

易知,解一元二次方程

2

=0时,可将左侧分解因式,即

2(x-1)(x-2)

=0,

2x-6x+4

求得其两根x1=1,x2=2.

反之,我们也可利用一元二次方程的两个根来分解二次三项式.

即,令二次三项式为0,

解此一元二次方程,求出其根,从而分解二次三项式.详尽方法以下:

若是一元二次方程

ax2+bx+c=0(a≠0)的两个根是

 

=a[x2-(x1+x2)x+x1x2]

=a(x-x

1)(x-x2).

从而得出以下结论.

在分解二次三项式ax2+bx+c的因式时,可先用公式求出方程

ax2+bx+c=0的两根x1,x2,

今后写成ax2+bx+c=a(x-x

1)(x-x2).

比方,方程2x

2

-6x+4

=0的两根是x=1,x=2.

1

2

则可将二次三项式分解因式,得

2

=2(x-1)(x-2).

2x-6x+4

例1把4x2-5分解因式.讲解例1

 

练习:

P371

小结:

用公式法解决二次三项式的因式分解问题时,其步骤为:

2

2.解方程(用求根公式等方法),得方程两根x1,x2;

3.代入a(x-x1)(x-x2).

作业:

习题12.5A组1

 

13

 

第13课二次三项式的因式分解

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1