数学建模物流配送中心选址模型.docx

上传人:b****1 文档编号:593717 上传时间:2022-10-11 格式:DOCX 页数:8 大小:300.91KB
下载 相关 举报
数学建模物流配送中心选址模型.docx_第1页
第1页 / 共8页
数学建模物流配送中心选址模型.docx_第2页
第2页 / 共8页
数学建模物流配送中心选址模型.docx_第3页
第3页 / 共8页
数学建模物流配送中心选址模型.docx_第4页
第4页 / 共8页
数学建模物流配送中心选址模型.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

数学建模物流配送中心选址模型.docx

《数学建模物流配送中心选址模型.docx》由会员分享,可在线阅读,更多相关《数学建模物流配送中心选址模型.docx(8页珍藏版)》请在冰豆网上搜索。

数学建模物流配送中心选址模型.docx

数学建模物流配送中心选址模型

物流配送中心选址模型

姓名:

莫米菊学号:

2班级:

物流管理092班

摘要:

在现代物流网络中,配送中心不仅执行一般物流职能,而且越来越多地执行指挥调度、信息处理、作业优化等神经中枢职能,是整个物流网络灵魂所在。

因此,发展现代化配送中心是现代物流业发展方向。

文章首先使用重心法计算出较为合适备选地,再考虑到各项配送中心选址固定成本和可变成本,从而使配送中心选址更加优化和符合实际。

关键词:

物流选址;选址;重心法;优化模型;

1.背景介绍

1.1研究主题

如下表中,有四个零售点坐标和物资需求量,计算并确定物流节点位置。

零售点

物资需求量

wj(吨)

运输费率

rj

坐标

xj

yj

1

2

5

2

2

2

3

5

11

3

3

2.5

5

10

8

4

1

5

4

9

1.2前人研究进展

1.2.1国内外研究现状:

国外对物流配送选址问题研究已有60余年历史,对各种类型物流配送中心选址问题在理论和实践方面都取得了令人注目成就,形成了多种可行模型和方法。

归纳起来,这些配送中心选址方法可分为三类:

(1)应用连续型模型选择地点;

(2)应用离散型模型选择地点;

(3)应用德尔菲(Delphi)专家咨询法选择地点。

第一类是以重心法为代表,认为物流中心地点可以在平面取任意点,物流配送中心设置在重心点时,货物运送到个需求点距离将最短。

这种方法通常只是考虑运输成本对配送中心选址影响,而运输成本一般是运输需求量、距离以及时间函数,所以解析方法根据距离、需求量、时间或三者结合,通过坐标上显示,以配送中心位置为因变量,用代数方法来求解配送中心坐标。

解析方法考虑影响因素较少,模型简单,主要适用于单个配送中心选址问题。

解析方法优点在于计算简单,数据容易搜集,易于理解。

由于通常不需要对物流系统进行整体评估,所以在单一设施定位时应用解析方法简便易行。

第二类方法认为物流中心各个选址地点是有限几个场所,最适合地址只能按照预定目标从有限个可行点中选取。

第二类方法中心思想则是将专家凭经验、专业知识做出判断用数值形式表示,从而经过分析后对选址进行决策。

国内在物流中心选址方面研究起步较晚,只有10余年历史,但也有许多学者对其进行了较深入研究,在理论和实践上都取得了较大成果。

北方交通大学鲁晓春等对配送中心重心法地址做出了深入研究,认为原有重心法存在着问题,并把原有计算公式用流通费用偏微分方程来取代。

中国矿业大学周梅华也用重心法和微分法相结合方法在徐州矿业集团自用型配送中心选址中进行应用,取得了很好地效果。

对于第三类物流中心选址方法,国内进行研究相对较少,主要在物流园区布局规划中有所应用[1]。

2.建模

2.1假设

(1)假设需求量集中以某一点

(2)模型没有区分在不同地点建设仓库所需资本成本,以及与在不同地点经营有关其他成本差别,而只计算运输成本。

(3)不考虑需求点库存策略。

(4)分销渠道内只有一种产品或者有多种产品,但假设其分拨储运方式及其费用率均相同。

(5)备选物流中心有容量限制,且限制容量已知。

[2]

2.2概念模型

假设有n个客户P1,P2,P3,…,Pn分布在同一个平面上,其坐标分别为(xi,yi),客户需求量为wi,费用函数为配送中心与客户间距离和相应运费、需求量乘积,确定P0(x0,y0),使总运用最小。

2.3数据模型

设总运费Z为:

 

wi---与第i个点对应权重,例如需求;

xi,yi---第i个需求点坐标;

 

精确重心法目标函数为双变量系统,分别对xs和ys求偏导,并令导数为零,求得隐含最优解等式[2]:

 

2.4软件求解

用Excel求解[3]:

①在Excel中输入数据,并且假设原点坐标为(1,1),在G3中输入“=SQRT(($D$9-D3)^2+($E$9-E3)^2)”,并将右下角十字光标下拉复制公式。

权重为:

距离×运输费率×物资需求量

②规划求解

③第一次迭代求得重心坐标为(7.76,5.52)此时总费用为196.46。

④第二次迭代求得重心坐标(9.15,5.21),此时总费用为190.04。

⑤第100次迭代求得重心坐标为(9.20,5.03),此时总费用为189.97。

2.5模型分析

1)敏感性报告

2)运算结果报告

2)极限值报告

关于重心法,尽管理论上能够求得比较精确最优化结果,但是在现实作中,却不一定容易实现。

首先,在精确最优化解位置上由于其他因素影响,决策者考虑其他因素后,又是不得不放弃这一最优化解结果,转而选择现实中满意其他方案。

其次,在该模型中将距离刚坐标来表示,这样就把运输费用看成是两点间直线距离函数,这一点与实际是不相符,虽然可通过在距离计算公式中增加一个调整系数来加以修正,但系数合理选取还是有一定难度。

最后,当供给点和需求点同在一个系统中时,求得“重心”最优性是在供给点必须通过该“重心”再到达需求点前提下取得,而事实上,这个前提并不是真正必须,在很多情况下,由于明显不合理性而会对结果进行调整,调整结果也难以保证其最优性。

[4]

下面对重心法模型进行改进,根据重心法选择地点有可能在江流之上或者在街道中间,此时就需要根据客观条件,放弃最有位置而另外选择一比较满意位置,还需要对重心法求得坐标点进行分析,当考虑可变成本、固定成本和决策权值时,最佳选址地点是什么。

3.模型改进

3.1假设

设有n个零售点,它们坐标是(xi,yj)(i,j=1,2,3,……,n),配送中心坐标是(x0,y0),假设:

(1)运输费用只与配送中心和配送点直线距离有关,不考虑城市交通情况;

(2)选择配送中心时,不考虑配送中心所在地理位置,不考虑城市交通情况;

(3)选择配送中心时,不考虑配送中心所处地理位置地产价格;

(4)各需求点需求量已知;

(5)可以估计各个备选配送中心固定费用(包括基本建设费和固定经营费);

(6)可以估计经营管理产生可变费用,并在总费用中加以考虑。

3.2数学模型

H=hjwjdj(j=1,2,3,……,n)

MinF(x)=ρ1H1+ρ1νIi(Wj)θ+ρ2FIi

其中:

hj---从配送中心到零售店i发送费率;

wj---从配送中心向零售店i发送量;

dj---从配送中心到零售店i距离;

Ii一由重心法得到各个备选地址;

Wj---各个零售店需求量之和;

HIi---指备选地址I.总运输费用;

νIi---指各备选配送中心考虑经营管理单位可变费用;

νIi(Wj)θ---指各备选地址I.总可变费用;

FIi---指各备选地址I固定费用;

θ---经验值,且θ∈(0,1);

ρ1,ρ2---权系数(可以根据决策者需求来定)且ρ1+ρ2=l,其中ρ1,ρ2∈(0,1)。

假设ρ1=0.7,ρ2=0.3。

根据上面例题,可知有三个方案(7.76,5.52),(9.15,5.21)和(9.20,5.03)。

设方案1可变费用为350,固定费用为400;方案2可变费用为400,固定费用为350;第三个方案可变费用为500,固定费用为340。

根据公式软件求解:

有结果可知此时方案一总费用最低,为584.979,是最佳方案。

4.结论

配送中心是提高流通企业组织化程度、实现集约化经营、优化社会资源配置、创造规模效益、推动流通科技进步、实现流通现代化有效形式。

重心法模型是连续型模型,相对于离散模型来说,其物流配送中心地点选择是不加特定限制,有自由选择长处,而且由于改进模型不仅考虑了运输成本,而且还考虑了配送中心可变运营成本、固定成本和决策权系数,比传统重心法又有了明显优越性,因此有较好实用性。

还可以推广到其它选址问题上,如投资问题,不足之处在于只能解决单配送中心选址问题,如果要用于多配送中心选址还需改进。

参考文献

[1]jobwangwu.物流设施选址模型间就现状及新思考[EB/OL].

[2]wdm10001基于重心法配送中心选址研究及应用[EB/OL].

[3]李孟涛,徐建.物流常用数学工具实验教程[M].北京:

中国人民大学出版社,2011-4:

25-28.

[4]蒋长兵,王姗姗.精确重心算法在物流节点选址中应用[J].物流技术,2005(9):

32-36.

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试认证 > IT认证

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1