各种元素对铸造的影响.docx

上传人:b****6 文档编号:5876905 上传时间:2023-01-01 格式:DOCX 页数:13 大小:159.24KB
下载 相关 举报
各种元素对铸造的影响.docx_第1页
第1页 / 共13页
各种元素对铸造的影响.docx_第2页
第2页 / 共13页
各种元素对铸造的影响.docx_第3页
第3页 / 共13页
各种元素对铸造的影响.docx_第4页
第4页 / 共13页
各种元素对铸造的影响.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

各种元素对铸造的影响.docx

《各种元素对铸造的影响.docx》由会员分享,可在线阅读,更多相关《各种元素对铸造的影响.docx(13页珍藏版)》请在冰豆网上搜索。

各种元素对铸造的影响.docx

各种元素对铸造的影响

各种元素对铸铁组织性能的影响

1.C

碳是铸铁的基本组元,在铸铁中的存在形式主要有两种,一种是以游离碳石墨的形式存在,另一种是以化合碳渗碳体的形式存在,也正是碳在铸铁中的这种存在形式可把铸铁分成许多类型可把铸铁分成许多类型,在灰铸铁中,碳的质量分数控制在2.7%-3.8%的范围内,碳主要以片状石墨形式存在,高碳灰铸铁的金相组织为铁素体和粗大的片状石墨,机械强度和硬度较低,但挠度较好;低碳灰铸铁的金相组织为珠光体和细小的片状石墨,有较高的机械强度和硬度,但挠度较差。

由于灰铸铁的成分位于共晶点附近,因此具有良好的铸造性能。

对于亚共晶范围的灰铸铁,增加碳含量能提高流动性,反之,对于过共晶范围的灰铸铁,只有降低碳含量才能提高流动性。

在QT中含C量高,析出的石墨数量多,石墨球数多,球径尺寸小,圆整度增加。

提高含C量可以减小缩松体积,减小缩松面积,使铸件致密。

但是含C量过高则降低缩松作用不明显,反而出现严重的石墨漂浮,且为保证球化所需要的残余Mg量要增多。

2.Si

硅是铸铁的常存五元素之一,能减少碳在液态和固态铁中的溶解度,促进石墨的析出,因此是促进石墨化的元素,其作用为碳的1/3左右,故增加硅量会增加石墨的数量,也会使石墨粗大;反之,减少硅量,会使石墨细小。

在灰铸铁中,硅的质量分数控制在1.1%-2.7%的范围内,一般碳硅含量低可获得较高的机械强度和硬度,但流动性稍差;反之,碳硅含量高,流动性好,机械强度和硬度较低。

当薄壁铸件出现白口时,可提高碳硅含量使之变灰;当厚壁铸件出现粗大的石墨时,应适当降低碳硅含量,并达到提高机械强度和硬度的目的。

Si是Fe-C合金中能够封闭r区的元素,Si使共析点的含C量降低。

Si提高共析转变温度,且在QT中使铁素体增加的作用比HT要大。

HT中C、Si都是强烈促进石墨化的元素。

提高碳当量促使石墨片变粗、数量增多,强度和硬度下降。

降低碳当量可以减少石墨数量、细化石墨、增加初析奥氏体枝晶数量,从而是提高灰铸铁力学性能常采取的措施。

但是降低碳当量会导致铸造性能降低、铸件断面敏感性增加,硬度上升加工困难等问题。

3.Mn

锰是铸铁的常存五元素之一,除少量固溶于铁素体以外,大部分溶入共析碳化物和渗碳体中,以复合碳化物的形态存在,加强了碳化物的形成,因此是阻碍石墨化的元素,故增加锰量会增大基体组织中的珠光体数量。

在灰铸铁中,锰的质量分数控制在0.5%-1.4%的范围内,主要作用有二,一是中和硫的有害作用,生成MnS及(Fe、Mn)S化合物,以颗粒状分布于机体中。

这些化合物的熔点在1600℃以上,不仅无阻碍石墨化的作用,而且还可以作为石墨化非自发性晶核。

二是稳定和细化珠光体,在此含量范围内,随锰含量的增加,铸铁的强度、硬度增加,而塑性和韧性降低。

在QT中Mn的作用是形成碳化物和珠光体。

对于厚大断面的QT件来说,锰是偏析倾向特别显著的元素,是强烈稳定奥氏体的元素,对稳定珠光体的作用也很显著,在生产珠光体QT时,可以利用锰稳定珠光体的作用消除石墨球周围的铁素体(牛眼)组织。

4.S

硫也是铸铁的常存五元素之一,在通常的铸铁中也被认为是有害元素。

硫稳定渗碳体,阻止石墨化。

硫少量溶于铁素体及渗碳体小,降低碳在液态铸铁中的溶解度,大部分以硫化铁(FeS)和其他硫化夹杂物(MnS,CeS)的形式存在于铸铁中,并分布于晶界上。

硫化铁的熔点低、且质软而脆,能降低铸铁的强度,促进铸铁的收缩,并引起铸铁的过硬和裂纹形成。

硫化锰的熔点高、且以颗粒状分布,对铸铁的强度无多大影响,但使铁液变稠,流动性变差。

对于灰铸铁,硫的质量分数控制在低于0.15%。

S在QT中是反石墨化元素,属于有害杂质。

5.P

磷也是铸铁的常存五元素之一,在通常的铸铁中被认为是有害元素。

P使铸铁的共晶点左移,且作用程度和硅相似,能溶于液态铸铁中,并降低碳在液态铸铁中的溶解度,故计算碳当量时应计入磷的含量;但在固态铸铁中磷的溶解度是有限的,并随着碳含量的增加和温度的降低而减少。

磷对石墨化的影响不大,略微促进石墨化,但有时也能阻碍石墨化。

磷主要以二元磷共晶(Fe-Fe3P)、三元磷共晶(Fe-FeP-Fe3P)和复合磷共晶的形式存在于铸铁中,磷共晶的硬度高、脆性大、分布在晶粒的边界上,割裂了晶粒间的连续性,使铸铁的强度、塑性下降,硬度提高。

另外,由于磷共晶具有较低的熔化温度和磷可以降低铸铁的熔点的缘故,因此磷能增加铸铁的流动性和可铸性,但磷的增高会使铸铁的缩孔、缩松以及开裂倾向增加。

对于灰铸铁,磷的质量分数控制在低于3.0%。

P在QT中不影响球化,但是有害元素,它可以溶解在铁液减低铁碳合金的共晶含碳量。

其降低的碳量相当与它含量的1/3。

6.Cu

铜是促进共晶阶段石墨化的元素,石墨化能力相当于硅的1/10-1/5。

铜在超过它的固溶度极限时,常以显微质点或超显微质点分布于铸铁中。

铜使组织致密,并细化和改善石墨的均匀分布,既能降低铸铁的白口倾向,又能降低奥氏体转变临界温度,细化和增加进珠光体,对断面敏感性有有利影响。

铜具有强化铸铁铁素体和珠光体的倾向,因此能增加铸铁的强度,铸铁的抗拉强度、抗弯强度几乎与所含铜量成比例的增加,在低碳铸铁中尤为显著。

在一般铸铁中,铜的质量分数在3.0%-3.5%以下可使硬度增加;但当铸铁具有形成白口倾向时,或存在着游离碳化物的硬点时,则加入铜会使硬度降低。

常用量<1.0%。

7.Cr

1)反石墨化作用属中强,共析转变时稳定珠光体

2)铬是缩小γ区的元素,Cr20%时,γ区消失

3)用量0.15%-30%

4)其用量小于1.0%仍属灰铸铁(可能有少量自由Fe3C出现),但力学性能有所提高。

8.Sn

1)为增加珠光体量而加入,一般用量<0.1%,可提高铸铁强度,>0.1%时有可能使铸铁出现脆性

2)Sn>0.1%可出现反球化作用

3)共晶团边界易形成FeSn2的偏析化合物,因此有韧性要求时,注意Sn量的控制

9.Mo

1)Mo<0.6%时,稳定碳化物的作用比较温和,主要作用在于细化珠光体,亦能细化石墨。

2)Mo<0.8%时对铸铁的强化作用较大

3)用Mo作合金化时P量一定要低,否则会出现P-Mo四元共晶,增加脆性

4)Mo>1%时,达到1.8%—2.0%时,可抑制珠光体的转变,而形成针状基体

5)Mo能使“C”曲线右移,并有使形成两个“鼻子”的作用,故易得贝氏体

10.Ni

1)溶与液体铁及铁素体

2)共晶期间促进石墨化,其作用相当于1/3Si

3)降低奥氏体转变温度,扩大奥氏体区,能细化并增加珠光体

4)Ni<3.0%,珠光体型,可提高强度,主要用作结构材料;Ni3%—8%,马氏体型,主要用作耐磨材料;Ni>12%,奥氏体型,主要用作耐腐蚀材料等。

5)对石墨粗细影响较小

11.Sb

1)强烈促进形成珠光体

2)0.002%—0.01%时,对QT有使石墨球细化的作用,尤其对大断面QT件有效

3)其干扰球化的作用可用稀土元素中和

4)HT中的加入量为<0.02%,QT中的加入量0.002%—0.010%

灰铸铁的组织和几种合金元素的影响

过去半个世纪中,灰铸铁的熔炼和孕育处理有了很大的进展,对于铸铁的合金化、生核和凝固以及固态的相变都作了不少研究。

在材料科学日新月异的今天,灰铸铁仍能作为一种结构材料而具有相当的竞争能力,是与这些研究工作分不开的。

目前,许多重要的机器零件,如机床床身、内燃机缸体、缸盖、壳体、歧管、压缩机缸体和液压阀等,都是用灰铸铁制成的。

当然,对灰铸铁性能的要求也越来越高了。

既要保证强度高,又要有良好的加工性能和厚、薄截面组织的一致性;还要求铸铁的刚度高(弹性模量大),铸件的尺寸稳定。

生产高牌号灰铸铁件,进行有效的孕育处理,是至关重要的,但是,正确地确定化学成分,必要时配加少量合金元素,也是不可忽视的条件。

如处理得当,选定化学成分和孕育处理可以有相辅相成的叠加效果。

这里,我们要扼要地讨论有关控制灰铸铁化学成分的一些问题,将不涉及孕育处理。

一.灰铸铁的组织和合金元素的影响

灰铸铁的强度和综合质量,决定于其最终的显微组织,生产高牌号灰铸铁件,控制其显微组织的目标,大致有以下几方面:

◆有较多的初生奥氏体枝状晶;

◆无游离渗碳体和晶间渗碳体;

◆石墨细小而且是A型;

◆基体组织95%以上为珠光体,游离铁素体不多于5%;

◆珠光体细小。

上述5项目标中,前3项要在铸铁凝固过程中建立,后2项则要通过控制铸铁的固态转变来达成。

1.铸铁的凝固过程

要分析铸铁的凝固过程,不能不回顾一下铁-碳合金的相图。

铁-碳合金的相图是双重的,有稳定的铁-石墨系和介稳定的铁-渗碳体系。

制成高性能的灰铁件,当然不希望出现游离的渗碳体,所以要使铸铁按稳定的铁-石墨系凝固。

图1中简略地表示了铁-碳合金相图的共晶部分,并表示了一些合金元素对铁-石墨系和铁-渗碳体系共晶温度的影响。

图1合金元素对铁-石墨系和铁-渗碳体系平衡共晶温度的影响

铁-石墨系的共晶温度高于铁-渗碳体系的共晶温度,如果共晶成分的铁水冷却到铁-石墨共晶温度以下,同时又在铁-渗碳体的共晶温度以上,此时,对铁-石墨系而言铁水已经有了过冷度,可以进行石墨加奥氏体(γ)的共晶结晶,对铁-渗碳体系而言,则系统的自由能仍较高,设有进行渗碳体加奥氏体共晶结晶的可能。

这样,得到的是没有游离渗碳体的灰铸铁。

但是,对于只含碳而不含其他合金元素的铸铁,铁-石墨共晶结晶温度与铁-渗碳体共晶温度之间的间隔只有6℃,要实现上述凝固条件,实际上几乎是不可能的。

在铁-碳合金中加入硅,可以使铁-石墨共晶温度与铁-渗碳体共晶温度之间的间隔显著扩大,见图2。

含硅量为2%时,此间隔大于30℃,要制得不含游离渗碳体的铸铁,就非常方便了。

所以,所有的灰铸铁中都含有大量的硅,硅是灰铸铁中必不可少的,极为重要的合金元素。

正因为所有的灰铁中都含有硅,司空见惯,许多人反而不视其为合金元素了。

图2硅对铁碳合金平衡共晶温度的影响

各种常用的合金元素,对两共晶温度间隔的影响,概略地在图1中表示了。

一些有数据可供参考的合金元素的作用见表1。

①对于铁-石墨系共晶成分,将表列数据乘以元素含量的百分数。

②在稳定条件下凝固时,固、液界面处合金元素在固相中的含量与其在液相中的含量的比。

*—尚缺可用的数据。

(1)初生奥氏体析出

灰铸铁大都是亚共晶铸铁,共凝固过程从自液相中析出初生奥氏体枝晶开始。

即使是共晶成分的铸铁,也会产生一些初生奥氏体,因为诱发共晶反应有赖于石墨的生核,石墨生核又需要一定的过冷度,这就有利于析出初生奥氏体。

共晶反应前析出的初生奥氏体枝晶的量愈多,铸铁的强度愈高,初生奥氏体枝晶的多少,取决于铸铁的化学成分。

碳含量是决定奥氏体枝晶析出量的主要因素,碳含量比共晶碳含量(4.3%)低得愈多,奥氏体枝晶析出量就愈多。

大多数合金元素,都改变铸铁的共晶碳含量,从而改变初生奥氏体枝晶的析出量。

使铸铁共晶碳含量降低的元素,通常称为石墨化元素;使共晶碳含量提高的元素,称为渗碳体稳定元素。

硅和磷是作用强的、降低铸铁共晶碳含量的元素,灰铸铁中含有硅和磷时,其共晶碳含量见下式:

共晶碳含量(%)=4.3%-1/3(%Si+%P)

一些常用合金元素的影响见表1。

硫降低共晶碳含量的作用大于硅和磷,其在灰铸铁中作用的机制比较复杂,以后会较详细地谈到。

铝降低共晶碳含量的作用也很强,但铝主要用于高铝耐热铸铁,一般灰铸铁中都不含铝。

如果灰铸铁的含碳量不变,加入降低共晶碳含量的合金元素,就会使铸铁的碳当量增高,从而会使初生奥氏体枝晶的析出量较少,共晶凝固的液相较多。

如果保持灰铸铁的碳当量不变,适当地提高含硅量,降低含碳量(即采用较高的硅碳比),却可以稍稍增加奥氏体枝晶量,同时减少石墨析出量。

这样,就可以相应提高铸铁的强度和弹性模量。

(2)共晶凝固

随着初生奥氏体枝晶的析出,剩余液相中的碳当量不断提高,到其值达到4.3%时,即发生共晶转变。

共晶凝固从石墨生核开始。

液相中微细的未熔石墨颗粒和高熔点的非金属夹杂物都可以是石墨结晶的核心。

石墨晶核形成后,很快就生长成片状分枝,邻近石墨的液相中碳含量减少,促使奥氏体在石墨之间析出。

奥氏体析出,又使邻近的液相富碳,促进石墨继续生长。

这样相互促进,并向周围液相不断生长的奥氏体-石墨共生晶粒,我们称之为共晶团。

液相中很多这样的共晶团,各自径向长大,结晶前沿大致接近于球形。

每一个共晶团中的石墨片又都是相互连接的。

共晶凝固终了时,各共晶团相互间、共晶团与初生奥氏体枝晶。

间互相接触。

共晶团晶界上常聚集有较多的夹杂物,一些元素,(如磷、硫)与铁、碳组成的低熔点共晶体也可能析出于共晶团之间。

有时,由于合金元素的偏析,还可能导致在共晶团之间析出渗碳体,这种渗碳体称之间晶间渗碳体。

石墨片的形态和尺寸,主要决定于凝固温度,冷却速率和液相中生核的情况。

比较理想的石墨组织是散乱分布的、长度相近的石墨片(即A型石墨)。

如铁水中生核状况良好,在略低于平衡共晶温度的适当过冷度下发生共晶反应,就可得到A型石墨。

如果铁水中的生核条件不好,在比平衡温度低得多的温度下(过冷度大)凝固,则石墨片的长大速率和分枝速率都很高,则得到分布于枝晶间的细小石墨片,通常称之为过冷石墨(D型石墨)。

除在特殊条件下使用的铸铁件外,一般不希望产生这种石墨组织。

增加共晶团数量(即共晶团尺寸减少),可使铸铁的强度较高,所以也是制造高牌号铸铁的目标。

孕育处理是增加共晶团数的有效方法,但是,许多研究工作表明,一些偏析于液相并使固相线温度降低的合金元素,会阻碍共晶团的长大,从而使铸铁的共晶团数增加。

现已知道,铸铁中加入钼、钒、铬、磷和铋,都可使共晶团数增加。

2.对灰铸铁凝固过程的分析

对于研究铸铁的凝固过程,冷却曲线是很有价值的。

分析冷却曲线的特点,就可以预测铸铁的组织和性能。

亚共晶灰铸铁的典型凝固冷却曲线如图3所示。

图3亚共晶灰铸铁的典型凝固冷却曲线

铁水冷却到液相线以下,即有初生奥氏体枝状晶析出,冷却曲线上出现一个小平台。

此后,冷却到铁-石墨共晶温度以下,到达一定的过冷度,就发生共晶反应,即先有石墨生核,然后以此为基础长成共晶团。

共晶反应释放的熔化热,又使过冷的液相温度回升,通常称之为“再辉”。

最后,由于不断经铸型散热,系统的温度下降,在铁-渗碳体共晶温度以上凝固终了。

在此种条件下,铸铁中石墨为A型,无游离渗碳体。

一些我们不希望其出现的组织及其产生的条件如下:

(1)过冷石墨

如果铁水冷到铁-石墨共晶温度以下,而石墨生核的条件不好,推迟了共晶团的形成和长大,产生较大的过冷度,石墨就细小,成为B型及至D型。

如果共晶反应的起始和终了都在铁-渗碳体共晶温度以上,则铸铁中仍不存在游离渗碳体,只是石墨的形态为过冷石墨,参见图4。

图4生核不足、过冷度大的铸铁的凝固冷却曲线

(2)麻口组织

铸铁中的碳,一部分以渗碳体的形态存在,一部分为石墨,断口上可见白色部分和灰色部分搀杂相间,通常称为麻石组织。

有时也出现在外围白口和中心灰口之间的过渡部位。

如铸件的冷却速率很高,铁水很快就冷到铁-渗碳体共晶温度以下,在薄壁处和角上就会有渗碳体和奥氏体析出。

同时,石墨也能生核并长大。

发生两种共晶反应所释放的热,又使液相的温度回升到铁-渗碳体共晶温度以上,铁-渗碳体共晶反应停止,限制了游离渗碳体的析出。

在这样的条件下,铸铁可在两共晶温度之间完全凝固,(见图5)得到麻口组织。

图6白口铸铁的凝固冷却曲线

产生白口组织的条件,主要有以下三项。

a.冷却速率很高。

发生共晶反应以前,铁水就冷却到铁-渗碳体共晶温度以下。

造成冷却速率过高的工艺因素有:

◆铸件壁薄;

◆浇注温度太低,在凝固以前加热型腔的作用差,铸件与铸型间的温差大;

◆铸型的导热能力强。

b.铸铁的碳当量太低。

凝固过程中析出的初生奥氏体枝晶多,剩下的共晶成分的液相不多,发生共晶反应时,释放的热量不足以使温度升高到铁-渗碳体温度以上。

c.合金元素的影响,大多数合金元素都会影响共晶碳含量,使碳当量改变,从而促成白口。

此外,合金元素还会改变共晶温度,影响铁-石墨系和铁-渗碳体系共晶温度之间的间隔。

一些渗碳体稳定元素(如Cv,V和Ti),在降低铁-石墨共晶温度的同时又提高铁-渗碳体共晶温度,铁水当然就容易过冷到铁-渗碳体共晶温度以下。

还有一些合金元素(如Mn和Mo等),既降低铁-石墨共晶温度,也降低铁-渗碳体共晶温度,对白口倾向就没有明显的影响。

(4)晶间渗碳体

前面已经谈到,共晶凝固初期形成的渗碳体会造成白口组织或麻口组织,在共晶凝固后期析出的游离渗碳体,则分散于共晶团之间,通常称为晶间渗碳体。

在进行共晶凝固时,释放的熔化热一般都会使剩余液相的温度升高。

如果在凝固后期,释放的热量消减,一些残留在共晶团之间的剩余的液相又冷却到铁-渗碳体共晶温度以下,就会产生晶间渗碳体,参见图7。

图7形成晶间渗碳体时的凝固冷却曲线

铸铁凝固过程中,合金元素在液相和固相之间的偏析,也可能导致晶间渗碳体出现。

一般说来,石墨化元素多偏析于固相中,碳化物稳定元素则多偏析于液相中。

在铸铁中加有合金元素时,凝固过程中,剩余液相中铬和钒之类的元素逐渐富集,而硅和镍之类的元素逐渐减少。

结果,剩余液相的铁-渗碳体共晶温度逐渐提高,铁-石墨共晶温度逐渐降低,两者之间的间隔不断缩小。

最后凝固的液相中的碳,就可能以渗碳体的形式析出。

图8示意地说明了这种情况。

图8共晶凝固时合金元素偏析对凝固冷却曲线的影响(形成晶间渗碳体)

合金铸铁中析出晶间渗碳体,可能与铸件的截面尺寸无关。

实际上,有证据表明,缓慢凝固反而可能促成晶间渗碳体的析出,因为缓冷可能造成有利于合金元素偏析的条件。

避免出现此种晶间渗碳体,关键往往不在于提高石墨化元素的含量,因为石墨化元素偏析于固相中,未必能明显影响最后凝固的液相。

解决的措施可以是:

降低铬、钒等元素的含量,并加速共晶凝固过程。

(5)磷共晶

铸铁中含磷量超过0.02%,就可能出现晶间磷共晶。

磷在奥氏体中的溶解度很小,铸铁凝固时,磷基本上都留在液相中。

共晶凝固接近完成时,共晶团之间剩余的液相的成分接近三元共晶成分(Fe-2%、C-7%、P)。

此液相约在955℃凝固。

铸铁凝固时,钼、铬、钨和钒都偏析于富磷的液相中,使磷共晶的量增多。

铸铁中含磷量高时,除磷共晶本身的有害作用外,还会使金属基体中所含的合金元素减少,从而减弱合金元素的作用。

磷共晶液体在凝固长大的共晶团周围呈糊状,凝固收缩很难得到补给,铸件出现缩松的倾向较大。

3.共析转变(奥氏体转变)

为了得到高强度的灰铸铁,我们希望奥氏体转变时不产生铁素体,金属基体全部为珠光体,而且要力求得到细小的珠光体。

灰铸铁中,合金元素的主要作用是控制奥氏体的转变。

有些合金促成珠光体,有些合金促成铁素体,有些合金可以使珠光体细化。

为了更好地了解合金元素对灰铸铁奥氏体转变的影响,有必要先分析一下灰铸铁的平衡相图。

含硅2%的铁碳合金比较接近一般的灰铸铁,其平衡相图的相关部分见图9。

图9中,最值得注意的是铁素体(α)、奥氏体(γ)和石墨同时存在的三相区。

三相区上面的界限是铁素体转变温度αT,下面的界限是共析温度A1。

铁-碳合金二元相图中,没有这样的三相区,这是由于含有硅而特有的。

(1)平衡条件下的转变

在平衡条件下缓慢冷却时,奥氏体转变为铁素体和石墨。

在固相线温度,奥氏体中大约含碳1.5%(A点),冷却过程中,碳在奥氏体中的溶解度不断下降。

自A点冷却到B点,约有1%的碳自奥氏体析出。

在αT温度以下的冷却过程中,还会发生石墨化,冷却到A1温度(C点),所有的奥氏体都已转变为铁素体和石墨。

奥氏体转变为铁素体和石墨时,共析石墨都沉积在共晶团的石墨片上,使之增厚。

固相中形成新的石墨核心是非常困难的。

石墨片增厚需要的两条件:

一是奥氏体中的碳原子扩散到石墨片上;二是石墨长大前沿的铁原子离开奥氏体/石墨界面。

奥氏体中铁原子的排列最紧密,每一原子周围有12个相邻的原子,原子的移动主要靠晶格中的空隙。

要使铁原子不断自石墨化前沿移开,就需要奥氏体中远处的空隙不断石墨化前沿扩散。

如果冷却快,不能给原子扩散以足够的时间,就不能实现这种转变。

所以,上述平衡条件下的转变只能发生于冷却非常缓慢的情况下。

全部铁素体基体的灰铸铁,实际上是非常少见的。

(2)珠光体的形成——非平衡条件

如果铸件冷却较快,奥氏体过冷到共析温度A1以下,就会转变为珠光体。

发生珠光体转变时,首先是渗碳体在奥氏体与石墨或其他夹杂物的界面上生核并成长。

由于渗碳体的长大,其附近的奥氏体含碳量降低,于是在渗碳体的两侧析出铁素体。

铁素体的析出,又使其附近的奥氏体富碳,又为渗碳体的析出创造了条件。

这样的不断发展,就会形成由大体上互相平行的铁素体和渗碳体片层组成的珠光体团。

每个奥氏体晶粒内,都会有若干珠光体团生长,直到其相互接触而终止。

进行这种转变,碳原子和铁原子扩散移动的距离比较短,不需要很长的扩散时间(缓慢冷却)。

(3)合金元素对共析转变的影响

硅是灰铁中最重要的合金元素,正因为含有2%左右的硅,灰铸铁的组织中才可以不含游离渗碳体。

但是,硅对灰铸铁的力学性能也有其负面作用。

首先,硅使铸铁的相图中产生铁素体、奥氏体和石墨共同存在的三相区,从而有利于铁素体形成。

此外,硅还降低碳在奥氏体中的溶解度,增加铁素体长大的速率。

可以通过加入其他元素来抵消硅的负面作用,使铸铁具有完全的珠光体基体。

合金元素可以通过不同的方式影响奥氏体的稳定性。

有些元素,如锡、锑、砷和铜,易于聚集在石墨-奥氏体界面上,阻止碳向石墨扩散,使碳固溶于奥氏体,从而促进形成珠光体。

有些元素,如锰和镍,使αT和A1温度下降,扩大奥氏体区。

由于碳的扩散速率随温度的下降而降低,在低温下形成铁素体的速率下降。

因此,奥氏体中的含碳量较高,产生珠光体的倾向增大。

一些碳化物形成元素,如锰和铬,使碳在奥氏体中的溶解度增大。

这类元素与碳的亲和力强,在冷却到αT温度期间,使碳保持固溶状态;在αT温度以下,则阻碍石墨化,阻碍形成游离铁素体,从而增加铸铁基体中的珠光体量。

还有些碳化物形成元素(如钼)对奥氏体稳定性的影响不大,但能使层状珠光体细化,从而显著地增强珠光体。

(4)合金元素细化珠光体的作用

合金元素最重要的影响,是其对奥氏体转变为珠光体、贝氏体和马氏体的动力过程的影响,从热处理的角度来看,就是合金元素对可淬硬性的影响。

连续冷却时,可淬硬性增强表现为将奥氏体转变的起始点推迟到较低的温度。

在较低的温度下形成的珠光体较细,强度和硬度也都较高。

在影响奥氏体转变方面,合金元素的作用并不相同。

有些合金元素阻碍形成游离铁素体的作用较强,有些合金元素推迟珠光体形成的作用较强。

铸铁中加入锡、锑、砷之类的合金元素,有促成珠光体的作用,而在细化珠光体方面实际上没有作用。

铬、铜和镍的作用不强,需加入较大的量才能明显地细化珠光体。

锰促成珠光体的作用中等,但其用量往往因为要保持合适的Mn/S比而受到制约。

钒和钼的促硬能力最强,加入较小的量就有可观的增强作用。

在中、低碳钢中,硅确有促进硬化的作用,其机制是延缓珠光体反应,冷却时易于得到马氏体。

但是,在灰铸铁中,可认为硅在这方面有负面的作用,硅使A1温度提高,促进形成游离铁素体。

硅还使珠光体在较高的温度下形成,即使得到珠光体,其强度和硬度也都较低。

钼的作用很特别,其推迟珠光体转变的作用强,但阻止铁素体形成的作用则很小。

所以,加入钼可推迟珠光体转变,但碳扩散的时间较长,形成的铸素体也较多,在未加其他合金元素的灰铸铁中加入钼,可能使铸件厚截面处的铁素体量增多。

所以,如要得到完全珠光

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1