51单片机C语言编程实例.docx
《51单片机C语言编程实例.docx》由会员分享,可在线阅读,更多相关《51单片机C语言编程实例.docx(31页珍藏版)》请在冰豆网上搜索。
51单片机C语言编程实例
基础知识:
51单片机编程基础
单片机的外部结构:
1.DIP40双列直插;
2.P0,P1,P2,P3四个8位准双向I/O引脚;(作为I/O输入时,要先输出高电平)
3.电源VCC(PIN40)和地线GND(PIN20);
4.高电平复位RESET(PIN9);(10uF电容接VCC与RESET,即可实现上电复位)
5.内置振荡电路,外部只要接晶体至X1(PIN18)和X0(PIN19);(频率为主频的12倍)
6.程序配置EA(PIN31)接高电平VCC;(运行单片机内部ROM中的程序)
7.P3支持第二功能:
RXD、TXD、INT0、INT1、T0、T1
单片机内部I/O部件:
(所为学习单片机,实际上就是编程控制以下I/O部件,完成指定任务)
1.四个8位通用I/O端口,对应引脚P0、P1、P2和P3;
2.两个16位定时计数器;(TMOD,TCON,TL0,TH0,TL1,TH1)
3.一个串行通信接口;(SCON,SBUF)
4.一个中断控制器;(IE,IP)
针对AT89C52单片机,头文件AT89x52.h给出了SFR特殊功能寄存器所有端口的定义。
C语言编程基础:
1.十六进制表示字节0x5a:
二进制为01011010B;0x6E为01101110。
2.如果将一个16位二进数赋给一个8位的字节变量,则自动截断为低8位,而丢掉高8位。
3.++var表示对变量var先增一;var—表示对变量后减一。
4.x|=0x0f;表示为x=x|0x0f;
5.TMOD=(TMOD&0xf0)|0x05;表示给变量TMOD的低四位赋值0x05,而不改变TMOD的高四位。
6.While
(1);表示无限执行该语句,即死循环。
语句后的分号表示空循环体,也就是{;}
在某引脚输出高电平的编程方法:
(比如P1.3(PIN4)引脚)
代码
1.#include //该头文档中有单片机内部资源的符号化定义,其中包含P1.3
2.void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口
3.{
4. P1_3 = 1; //给P1_3赋值1,引脚P1.3就能输出高电平VCC
5. While( 1 ); //死循环,相当 LOOP:
goto LOOP;
6.}
注意:
P0的每个引脚要输出高电平时,必须外接上拉电阻(如4K7)至VCC电源。
在某引脚输出低电平的编程方法:
(比如P2.7引脚)
代码
1.#include //该头文档中有单片机内部资源的符号化定义,其中包含P2.7
2.void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口
3.{
4. P2_7 = 0; //给P2_7赋值0,引脚P2.7就能输出低电平GND
5. While( 1 ); //死循环,相当 LOOP:
goto LOOP;
6.}
在某引脚输出方波编程方法:
(比如P3.1引脚)
代码
1.#include //该头文档中有单片机内部资源的符号化定义,其中包含P3.1
2.void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口
3.{
4. While( 1 ) //非零表示真,如果为真则执行下面循环体的语句
5. {
6.P3_1 = 1; //给P3_1赋值1,引脚P3.1就能输出高电平VCC
7. P3_1 = 0; //给P3_1赋值0,引脚P3.1就能输出低电平GND
8. } //由于一直为真,所以不断输出高、低、高、低……,从而形成方波
9.}
将某引脚的输入电平取反后,从另一个引脚输出:
(比如P0.4=NOT(P1.1))
代码
1.#include //该头文档中有单片机内部资源的符号化定义,其中包含P0.4和P1.1
2.void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口
3.{
4. P1_1 = 1; //初始化。
P1.1作为输入,必须输出高电平
5.While( 1 ) //非零表示真,如果为真则执行下面循环体的语句
6. {
7.if( P1_1 == 1 ) //读取P1.1,就是认为P1.1为输入,如果P1.1输入高电平VCC
8. { P0_4 = 0; } //给P0_4赋值0,引脚P0.4就能输出低电平GND
9. else //否则P1.1输入为低电平GND
10. //{ P0_4 = 0; } //给P0_4赋值0,引脚P0.4就能输出低电平GND
11. { P0_4 = 1; } //给P0_4赋值1,引脚P0.4就能输出高电平VCC
12. } //由于一直为真,所以不断根据P1.1的输入情况,改变P0.4的输出电平
13.}
将某端口8个引脚输入电平,低四位取反后,从另一个端口8个引脚输出:
(比如P2=NOT(P3))
代码
1.#include //该头文档中有单片机内部资源的符号化定义,其中包含P2和P3
2.void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口
3.{
4. P3 = 0xff; //初始化。
P3作为输入,必须输出高电平,同时给P3口的8个引脚输出高电平
5.While( 1 ) //非零表示真,如果为真则执行下面循环体的语句
6. { //取反的方法是异或1,而不取反的方法则是异或0
7.P2 = P3^0x0f //读取P3,就是认为P3为输入,低四位异或者1,即取反,然后输出
8. } //由于一直为真,所以不断将P3取反输出到P2
9.}
注意:
一个字节的8位D7、D6至D0,分别输出到P3.7、P3.6至P3.0,比如P3=0x0f,则P3.7、P3.6、P3.5、P3.4四个引脚都输出低电平,而P3.3、P3.2、P3.1、P3.0四个引脚都输出高电平。
同样,输入一个端口P2,即是将P2.7、P2.6至P2.0,读入到一个字节的8位D7、D6至D0。
第一节:
单数码管按键显示
单片机最小系统的硬件原理接线图:
1. 接电源:
VCC(PIN40)、GND(PIN20)。
加接退耦电容0.1uF
2. 接晶体:
X1(PIN18)、X2(PIN19)。
注意标出晶体频率(选用12MHz),还有辅助电容30pF
3. 接复位:
RES(PIN9)。
接上电复位电路,以及手动复位电路,分析复位工作原理
4. 接配置:
EA(PIN31)。
说明原因。
发光二极的控制:
单片机I/O输出
将一发光二极管LED的正极(阳极)接P1.1,LED的负极(阴极)接地GND。
只要P1.1输出高电平VCC,LED就正向导通(导通时LED上的压降大于1V),有电流流过LED,至发LED发亮。
实际上由于P1.1高电平输出电阻为10K,起到输出限流的作用,所以流过LED的电流小于(5V-1V)/10K=0.4mA。
只要P1.1输出低电平GND,实际小于0.3V,LED就不能导通,结果LED不亮。
开关双键的输入:
输入先输出高
一个按键KEY_ON接在P1.6与GND之间,另一个按键KEY_OFF接P1.7与GND之间,按KEY_ON后LED亮,按KEY_OFF后LED灭。
同时按下LED半亮,LED保持后松开键的状态,即ON亮OFF灭。
代码
1.#include
2.#define LED P1^1 //用符号LED代替P1_1
3.#define KEY_ON P1^6 //用符号KEY_ON代替P1_6
4.#define KEY_OFF P1^7 //用符号KEY_OFF代替P1_7
5.void main( void ) //单片机复位后的执行入口,void表示空,无输入参数,无返回值
6.{
7. KEY_ON = 1; //作为输入,首先输出高,接下KEY_ON,P1.6则接地为0,否则输入为1
8. KEY_OFF = 1; //作为输入,首先输出高,接下KEY_OFF,P1.7则接地为0,否则输入为1
9. While( 1 ) //永远为真,所以永远循环执行如下括号内所有语句
10. {
11. if( KEY_ON==0 ) LED=1; //是KEY_ON接下,所示P1.1输出高,LED亮
12. if( KEY_OFF==0 ) LED=0; //是KEY_OFF接下,所示P1.1输出低,LED灭
13. } //松开键后,都不给LED赋值,所以LED保持最后按键状态。
14.//同时按下时,LED不断亮灭,各占一半时间,交替频率很快,由于人眼惯性,看上去为半亮态
15.}
数码管的接法和驱动原理
一支七段数码管实际由8个发光二极管构成,其中7个组形构成数字8的七段笔画,所以称为七段数码管,而余下的1个发光二极管作为小数点。
作为习惯,分别给8个发光二极管标上记号:
a,b,c,d,e,f,g,h。
对应8的顶上一画,按顺时针方向排,中间一画为g,小数点为h。
我们通常又将各二极与一个字节的8位对应,a(D0),b(D1),c(D2),d(D3),e(D4),f(D5),g(D6),h(D7),相应8个发光二极管正好与单片机一个端口Pn的8个引脚连接,这样单片机就可以通过引脚输出高低电平控制8个发光二极的亮与灭,从而显示各种数字和符号;对应字节,引脚接法为:
a(Pn.0),b(Pn.1),c(Pn.2),d(Pn.3),e(Pn.4),f(Pn.5),g(Pn.6),h(Pn.7)。
如果将8个发光二极管的负极(阴极)内接在一起,作为数码管的一个引脚,这种数码管则被称为共阴数码管,共同的引脚则称为共阴极,8个正极则为段极。
否则,如果是将正极(阳极)内接在一起引出的,则称为共阳数码管,共同的引脚则称为共阳极,8个负极则为段极。
以单支共阴数码管为例,可将段极接到某端口Pn,共阴极接GND,则可编写出对应十六进制码的七段码表字节数据如右图:
16键码显示的程序
我们在P1端口接一支共阴数码管SLED,在P2、P3端口接16个按键,分别编号为KEY_0、KEY_1到KEY_F,操作时只能按一个键,按键后SLED显示对应键编号。
代码
1.#include
2.#define SLED P1
3.#define KEY_0 P2^0
4.#define KEY_1 P2^1
5.#define KEY_2 P2^2
6.#define KEY_3 P2^3
7.#define KEY_4 P2^4
8.#define KEY_5 P2^5
9.#define KEY_6 P2^6
10.#define KEY_7 P2^7
11.#define KEY_8 P3^0
12.#define KEY_9 P3^1
13.#define KEY_A P3^2
14.#define KEY_B P3^3
15.#define KEY_C P3^4
16.#define KEY_D P3^5
17.#define KEY_E P3^6
18.#define KEY_F P3^7
19.Code unsigned char Seg7Code[16]= //用十六进数作为数组下标,可直接取得对应的七段编码字节
20.// 0 1 2 3 4 5 6 7 8 9 A b C d E F
21.{0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07, 0x7f, 0x6f, 0x77, 0x7c, 0x39, 0x5e, 0x79, 0x71};
22.void main( void )
23.{
24. unsigned char i=0; //作为数组下标
25.P2 = 0xff; //P2作为输入,初始化输出高
26. P3 = 0xff; //P3作为输入,初始化输出高
27. While( 1 )
28. {
29. if( KEY_0 == 0 ) i=0; if( KEY_1 == 0 ) i=1;
30. if( KEY_2 == 0 ) i=2; if( KEY_3 == 0 ) i=3;
31. if( KEY_4 == 0 ) i=4; if( KEY_5 == 0 ) i=5;
32. if( KEY_6 == 0 ) i=6; if( KEY_7 == 0 ) i=7;
33. if( KEY_8 == 0 ) i=8; if( KEY_9 == 0 ) i=9;
34. if( KEY_A == 0 ) i=0xA; if( KEY_B == 0 ) i=0xB;
35. if( KEY_C == 0 ) i=0xC; if( KEY_D == 0 ) i=0xD;
36. if( KEY_E == 0 ) i=0xE; if( KEY_F == 0 ) i=0xF;
37. SLED = Seg7Code[ i ]; //开始时显示0,根据i取应七段编码
38.}
39.}
第二节:
双数码管可调秒表
解:
只要满足题目要求,方法越简单越好。
由于单片机I/O资源足够,所以双数码管可接成静态显示方式,两个共阴数码管分别接在P1(秒十位)和P2(秒个位)口,它们的共阴极都接地,安排两个按键接在P3.2(十位数调整)和P3.3(个位数调整)上,为了方便计时,选用12MHz的晶体。
为了达到精确计时,选用定时器方式2,每计数250重载一次,即250us,定义一整数变量计数重载次数,这样计数4000次即为一秒。
定义两个字节变量S10和S1分别计算秒十位和秒个位。
编得如下程序:
代码
1.#include
2.Code unsigned char Seg7Code[16]= //用十六进数作为数组下标,可直接取得对应的七段编码字节
3.// 0 1 2 3 4 5 6 7 8 9 A b C d E F
4.{0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07, 0x7f, 0x6f, 0x77, 0x7c, 0x39, 0x5e, 0x79, 0x71};
5.void main( void )
6.{
7. unsigned int us250 = 0;
8. unsigned char s10 = 0;
9. unsigned char s1 = 0;
10. unsigned char key10 = 0; //记忆按键状态,为1按下
11. unsigned char key1 = 0; //记忆按键状态,为1按下
12. //初始化定时器 Timer0
13. TMOD = (TMOD & 0xF0) | 0x02;
14. TH1 = -250; //对于8位二进数来说,-250=6,也就是加250次1时为256,即为0
15. TR1 = 1;
16. while
(1){ //----------循环1
17. P1 = Seg7Code[ s10 ]; //显示秒十位
18. P2 = Seg7Code[ s1 ]; //显示秒个位
19. while( 1 ){ //----------循环2
20. //计时处理
21.if( TF0 == 1 ){
22. TF0 = 0;
23. if( ++us250 >= 4000 ){
24. us250 = 0;
25. if( ++s1 >= 10 ){
26. s1 = 0;
27. if( ++s10 >= 6 ) s10 = 0;
28. }
29. break; //结束“循环2”,修改显示
30. }
31. }
32. //按十位键处理
33. P3.2 = 1; //P3.2作为输入,先要输出高电平
34. if( key10 == 1 ){ //等松键
35. if( P3.2 == 1 ) key10=0;
36. }
37.else{ //未按键
38. if( P3.2 == 0 ){
39. key10 = 1;
40. if( ++s10 >= 6 ) s10 = 0;
41. break; //结束“循环2”,修改显示
42. }
43. }
44. //按个位键处理
45. P3.3 = 1; //P3.3作为输入,先要输出高电平
46. if( key1 == 1 ) //等松键
47.{ if( P3.3 == 1 ) key1=0; }
48. else { //未按键
49. if( P3.3 == 0 ){ key1 = 1;
50. if( ++s1 >= 10 ) s1 = 0;
51. break; //结束“循环2”,修改显示
52. }
53. }
54. } //循环2’end
55. }//循环1’end
56.}//main’end
第三节:
十字路口交通灯
如果一个单位时间为1秒,这里设定的十字路口交通灯按如下方式四个步骤循环工作:
60个单位时间,南北红,东西绿;
10个单位时间,南北红,东西黄;
60个单位时间,南北绿,东西红;
10个单位时间,南北黄,东西红;
解:
用P1端口的6个引脚控制交通灯,高电平灯亮,低电平灯灭。
代码
1.#include
2.//sbit用来定义一个符号位地址,方便编程,提高可读性,和可移植性
3.sbit SNRed =P1^0; //南北方向红灯
4.sbit SNYellow =P1^1; //南北方向黄灯
5.sbit SNGreen =P1^2; //南北方向绿灯
6.sbit EWRed =P1^3; //东西方向红灯
7.sbit EWYellow =P1^4; //东西方向黄灯
8.sbit EWGreen =P1^5; //东西方向绿灯
9./* 用软件产生延时一个单位时间 */
10.void Delay1Unit( void )
11.{
12. unsigned int i, j;
13. for( i=0; i<1000; i++ )
14. for( j<0; j<1000; j++ ); //通过实测,调整j循环次数,产生1ms延时
15.//还可以通过生成汇编程序来计算指令周期数,结合晶体频率来调整j循环次数,接近1ms
16.}
17./* 延时n个单位时间 */
18.void Delay( unsigned int n ){ for( ; n!
=0; n-- ) Delay1Unit(); }
19.void main( void )
20.{
21. while( 1 )
22. {
23. SNRed=0; SNYellow=0; SNGreen=1; EWRed=1; EWYellow=0; EWGreen=0; Delay( 60 );
24. SNRed=0; SNYellow=1; SNGreen=0; EWRed=1; EWYellow=0; EWGreen=0; Delay( 10 );
25. SNRed=1; SNYellow=0; SNGreen=0; EWRed=0; EWYellow=0; EWGreen=1; Delay( 60 );
26. SNRed=1; SNYellow=0; SNGreen=0; EWRed=0; EWYellow=1; EWGreen=0; Delay( 10 );
27. }
28.}
第四节:
数码管驱动
显示“12345678”
P1端口接8联共阴数码管SLED8的段极:
P1.7接段h,…,P1.0接段a
P2端口接8联共阴数码管SLED8的段极:
P2.7接左边的共阴极,…,P2.0接右边的共阴极
方案说明:
晶振频率fosc=12MHz,数码管采用动态刷新方式显示,在1ms定时断服务程序中实现
代码
1.#include
2.unsigned char DisBuf[8]; //全局显示缓冲区,DisBuf[0]对应右SLED,DisBuf[7]对应左S