数字温度计.docx

上传人:b****0 文档编号:57461 上传时间:2022-10-01 格式:DOCX 页数:16 大小:378.29KB
下载 相关 举报
数字温度计.docx_第1页
第1页 / 共16页
数字温度计.docx_第2页
第2页 / 共16页
数字温度计.docx_第3页
第3页 / 共16页
数字温度计.docx_第4页
第4页 / 共16页
数字温度计.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

数字温度计.docx

《数字温度计.docx》由会员分享,可在线阅读,更多相关《数字温度计.docx(16页珍藏版)》请在冰豆网上搜索。

数字温度计.docx

数字温度计

 

课程设计报告

 

数字温度计

 

专业班级  

姓  名

时间

指导教师

 

20013年12月29日

 

1设计要求

■基本范围-50℃-110℃

■精度误差小于0.5℃

■LED数码直读显示

2扩展功能

■实现语音报数

■可以任意设定温度的上下限报警功能 

 

 

数字温度计

应教022李世朋

摘要:

温度计是工农业生产及科学研究中最常用的测量仪表。

随着时代的进步和发展,数字温度计得到了迅速的发展。

数字温度计的优点是准确度高,不易误读,分辨率高,特别是在测量小的温度变化时比较准确。

 数字温度计已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术。

本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。

关键词:

数字控制,温度计,DS18B20,AT89S51

1引言

随着人们生活水平的不断提高,数字化控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。

本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示。

2总体设计方案

2.1数字温度计设计方案论证

由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路。

2.2方案二的总体设计框图

温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。

 

图1 总体设计方框图

2.2.1A/D转换器

ICL7107是一块应用非常广泛的集成电路。

它包含31/2位数字A/D转换器,可直接驱动LED数码管,内部设有参考电压、独立模拟开关、逻辑控制、显示驱动、自动调零功能等。

这里我们介绍一种她的典型应用电路--数字电压表的制作。

其电路如附图。

制作时,数字显示用的数码管为共阳型,2K可调电阻最好选用多圈电阻,分压电阻选用误差较小的金属膜电阻,其它器件选用正品即可。

该电路稍加改造,还可演变出很多电路,如数显电流表、数显温度计等.

ICL7107安装电压表头时的一些要点:

按照测量=±199.9mV来说明。

1.辨认引脚:

芯片的第一脚,是正放芯片,面对型号字符,然后,在芯片的左下方为第一脚。

也可以把芯片的缺口朝左放置,左下角也就是第一脚了。

许多厂家会在第一脚旁边打上一个小圆点作为标记。

知道了第一脚之后,按照反时针方向去走,依次是第2至第40引脚。

(1脚与40脚遥遥相对)。

2.牢记关键点的电压:

芯片第一脚是供电,正确电压是DC5V。

第36脚是基准电压,正确数值是100mV,第26引脚是负电源引脚,正确电压数值是负的,在-3V至-5V都认为正常,但是不能是正电压,也不能是零电压。

芯片第31引脚是信号输入引脚,可以输入±199.9mV的电压。

在一开始,可以把它接地,造成“0”信号输入,以方便测试。

3.注意芯片27,28,29引脚的元件数值,它们是0.22uF,47K,0.47uF阻容网络,这三个元件属于芯片工作的积分网络,不能使用磁片电容。

芯片的33和34脚接的104电容也不能使用磁片电容。

4.注意接地引脚:

芯片的电源地是21脚,模拟地是32脚,信号地是30脚,基准地是35脚,通常使用情况下,这4个引脚都接地,在一些有特殊要求的应用中(例如测量电阻或者比例测量),30脚或35脚就可能不接地而是按照需要接到其他电压上。

--本文不讨论特殊要求应用。

5.负电压产生电路:

负电压电源可以从电路外部直接使用7905等芯片来提供,但是这要求供电需要正负电源,通常采用简单方法,利用一个+5V供电就可以解决问题。

比较常用的方法是利用ICL7660或者NE555等电路来得到,这样需要增加硬件成本。

我们常用一只NPN三极管,两只电阻,一个电感来进行信号放大,把芯片38脚的振荡信号串接一个20K-56K的电阻连接到三极管“B”极,在三极管“C”极串接一个电阻(为了保护)和一个电感(提高交流放大倍数),在正常工作时,三极管的“C”极电压为2.4V-2.8V为最好。

这样,在三极管的“C”极有放大的交流信号,把这个信号通过2只4u7电容和2支1N4148二极管,构成倍压整流电路,可以得到负电压供给ICL7107的26脚使用。

这个电压,最好是在-3.2V到-4.2V之间。

6.如果上面的所有连接和电压数值都是正常的,也没有“短路”或者“开路”故障,那么,电路就应该可以正常工作了。

利用一个电位器和指针万用表的电阻X1档,我们可以分别调整出50mV,100mV,190mV三种电压来,把它们依次输入到ICL7107的第31脚,数码管应该对应分别显示50.0,100.0,190.0的数值,允许有2-3个字的误差。

如果差别太大,可以微调一下36脚的电压。

7.比例读数:

把31脚与36脚短路,就是把基准电压作为信号输入到芯片的信号端,这时候,数码管显示的数值最好是100.0,通常在99.7-100.3之间,越接近100.0越好。

这个测试是看看芯片的比例读数转换情况,与基准电压具体是多少mV无关,也无法在外部进行调整这个读数。

如果差的太多,就需要更换芯片了。

8.ICL7107也经常使用在±1.999V量程,这时候,芯片27,28,29引脚的元件数值,更换为0.22uF,470K,0.047uF阻容网络,并且把36脚基准调整到1.000V就可以使用在±1.999V量程了。

9.这种数字电压表头,被广泛应用在许多测量场合,它是进行模拟-数字转换的最基本,最简单而又最低价位的一个方法,是作为数字化测量的一种最基本的技能。

 

2.2.2显示电路

显示电路采用3位共阳LED数码管,从P3口RXD,TXD串口输出段码。

2.2.3温度传感器

DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。

DS18B20的性能特点如下:

●独特的单线接口仅需要一个端口引脚进行通信;

●多个DS18B20可以并联在惟一的三线上,实现多点组网功能;

●无须外部器件;

●可通过数据线供电,电压范围为3.0~5.5V;

●零待机功耗;

●温度以9或12位数字;

●用户可定义报警设置;

●报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;

●负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作;

DS18B20采用3脚PR-35封装或8脚SOIC封装,其内部结构框图如图2所示。

 

图2DS18B20内部结构

64位ROM的结构开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用一线进行通信的原因。

温度报警触发器TH和TL,可通过软件写入户报警上下限。

DS18B20温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的EERAM。

高速暂存RAM的结构为8字节的存储器,结构如图3所示。

头2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝,是易失的,每次上电复位时被刷新。

第5个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率。

DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。

该字节各位的定义如图3所示。

低5位一直为1,TM是工作模式位,用于设置DS18B20在工作模式还是在测试模式,DS18B20出厂时该位被设置为0,用户要去改动,R1和R0决定温度转换的精度位数,来设置分辨率。

温度LSB

温度MSB

TH用户字节1

TL用户字节2

配置寄存器

保留

保留

保留

CRC

 

 

图3 DS18B20字节定义

由表1可见,DS18B20温度转换的时间比较长,而且分辨率越高,所需要的温度数据转换时间越长。

因此,在实际应用中要将分辨率和转换时间权衡考虑。

高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。

第9字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。

当DS18B20接收到温度转换命令后,开始启动转换。

转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1、2字节。

单片机可以通过单线接口读出该数据,读数据时低位在先,高位在后,数据格式以0.0625℃/LSB形式表示。

当符号位S=0时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;当符号位S=1时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制数值。

表2是一部分温度值对应的二进制温度数据。

表1DS18B20温度转换时间表

DS18B20完成温度转换后,就把测得的温度值与RAM中的TH、TL字节内容作比较。

若T>TH或T<TL,则将该器件内的报警标志位置位,并对主机发出的报警搜索命令作出响应。

因此,可用多只DS18B20同时测量温度并进行报警搜索。

在64位ROM的最高有效字节中存储有循环冗余检验码(CRC)。

主机ROM的前56位来计算CRC值,并和存入DS18B20的CRC值作比较,以判断主机收到的ROM数据是否正确。

DS18B20的测温原理是这这样的,器件中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1;高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入。

器件中还有一个计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲进行计数进而完成温度测量。

计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55℃所对应的一个基数分别置入减法计数器1、温度寄存器中,计数器1和温度寄存器被预置在-55℃所对应的一个基数值。

减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时,温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器计数到0时,停止温度寄存器的累加,此时温度寄存器中的数值就是所测温度值。

其输出用于修正减法计数器的预置值,只要计数器门仍未关闭就重复上述过程,直到温度寄存器值大致被测温度值。

表2 一部分温度对应值表

温度/℃

二进制表示

十六进制表示

+125

0000011111010000

07D0H

+85

0000010101010000

0550H

+25.0625

0000000110010000

0191H

+10.125

0000000010100001

00A2H

+0.5

0000000000000010

0008H

0

0000000000001000

0000H

-0.5

1111111111110000

FFF8H

-10.125

111111110101111

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1