专业实验实验二半导体泵浦固体激光器综合实验.docx

上传人:b****5 文档编号:5717191 上传时间:2022-12-31 格式:DOCX 页数:10 大小:225.01KB
下载 相关 举报
专业实验实验二半导体泵浦固体激光器综合实验.docx_第1页
第1页 / 共10页
专业实验实验二半导体泵浦固体激光器综合实验.docx_第2页
第2页 / 共10页
专业实验实验二半导体泵浦固体激光器综合实验.docx_第3页
第3页 / 共10页
专业实验实验二半导体泵浦固体激光器综合实验.docx_第4页
第4页 / 共10页
专业实验实验二半导体泵浦固体激光器综合实验.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

专业实验实验二半导体泵浦固体激光器综合实验.docx

《专业实验实验二半导体泵浦固体激光器综合实验.docx》由会员分享,可在线阅读,更多相关《专业实验实验二半导体泵浦固体激光器综合实验.docx(10页珍藏版)》请在冰豆网上搜索。

专业实验实验二半导体泵浦固体激光器综合实验.docx

专业实验实验二半导体泵浦固体激光器综合实验

半导体泵浦固体激光

器综合实验

实验讲义

大恒新纪元科技股份有限公司

版权所有不得翻印

半导体泵浦固体激光器综合实验

一、前言

半导体泵浦固体激光器(Diode-Pumpedsolid-stateLaser,DPL),是以激光二极管(LD)代替闪光灯泵浦固体激光介质的固体激光器,具有效率高、体积小、寿命长等一系列优点,在光通信、激光雷达、激光医学、激光加工等方面有巨大应用前景,是未来固体激光器的发展方向。

本实验的目的是熟悉半导体泵浦固体激光器的基本原理和调试技术,以及其调Q和倍频的原理和技术。

二、实验目的

a)掌握半导体泵浦固体激光器的工作原理和调试方法;

b)掌握固体激光器被动调Q的工作原理,进行调Q脉冲的测量;

c)了解固体激光器倍频的基本原理。

三、实验原理与装置

d)半导体激光泵浦固体激光器工作原理:

上世纪80年代起,生长半导体激光器(LD)技术得到了蓬勃发展,使得LD的功率和效率有了极大的提高,也极大地促进了DPSL技术的发展。

与闪光灯泵浦的固体激光器相比,DPSL的效率大大提高,体积大大减小。

在使用中,由于泵浦源LD的光束发散角较大,为

使其聚焦在增益介质上,必须对泵浦光束进行光束变换(耦合)。

泵浦耦合方式主要有端面

泵浦和侧面泵浦两种,其中端面泵浦方式适用于中小功率固体激光器,具有体积小、结构简单、空间模式匹配好等优点。

侧面泵浦方式主要应用于大功率激光器。

本实验采用端面泵浦方式。

端面泵浦耦合通常有直接耦合和间接耦合两种方式。

e)直接耦合:

将半导体激光器的发光面紧贴增益介质,使泵浦光束在尚未发散开之前

便被增益介质吸收,泵浦源和增益介质之间无光学系统,这种耦合方式称为直接耦合方式。

直接耦合方式结构紧凑,但是在实际应用中较难实现,并且容易对LD造

成损伤。

f)间接耦合:

指先将LD输出的光束进行准直、整形,再进行端面泵浦。

常见的方法有:

g)组合透镜系统聚光:

用球面透镜组合或者柱面透镜组合进行耦合。

h)自聚焦透镜耦合:

由自聚焦透镜取代组合透镜进行耦合,优点是结构简单,准直光斑的大小取决于自聚焦透镜的数值孔径。

i)光纤耦合:

指用带尾纤输出的LD进行泵浦耦合。

优点是结构灵活。

本实验先用光纤柱透镜对半导体激光器进行快轴准直,压缩发散角,然后采用组合透镜

对泵浦光束进行整形变换,各透镜表面均镀对泵浦光的增透膜,耦合效率高。

本实验的压缩和耦合如图2所示。

图1半导体激光泵浦固体激光器的常用耦合方式

1•直接耦合2•组合透镜耦合3•自聚焦透镜耦合4•光纤耦合

图2本实验LD光束快轴压缩耦合泵浦简图

j)激光晶体

图3Nd:

YAG晶体中Nd+吸收光谱图

激光晶体是影响DPL激光器性能的重要器件。

为了获得高效率的激光输出,在一定运

转方式下选择合适的激光晶体是非常重要的。

目前已经有上百种晶体作为增益介质实现了连

续波和脉冲激光运转,以钕离子(Nd3+)作为激活粒子的钕激光器是使用最广泛的激光器。

其中,以Nd3+离子部分取代Y3AI5O12晶体中丫3+离子的掺钕钇铝石榴石(Nd:

YAG),由于

具有量子效率高、受激辐射截面大、光学质量好、热导率高、容易生长等的优点,成为目前

应用最广泛的LD泵浦的理想激光晶体之一。

Nd:

YAG晶体的吸收光谱如图3所示。

从Nd:

YAG的吸收光谱图我们可以看出,Nd:

YAG在807.5nm处有一强吸收峰。

我们如

果选择波长与之匹配的LD作为泵浦源,就可获得高的输出功率和泵浦效率,这时我们称实

现了光谱匹配。

但是,LD的输出激光波长受温度的影响,温度变化时,输出激光波长会产生漂移,输出功率也会发生变化。

因此,为了获得稳定的波长,需采用具备精确控温的LD

电源,并把LD的温度设置好,使LD工作时的波长与Nd:

YAG的吸收峰匹配。

另外,在实际的激光器设计中,除了吸收波长和出射波长外,选择激光晶体时还需要考

虑掺杂浓度、上能级寿命、热导率、发射截面、吸收截面、吸收带宽等多种因素。

k)端面泵浦固体激光器的模式匹配技术

图4是典型的平凹腔型结构图。

激光晶体的一面镀泵浦光增透和输出激光全反膜,并作为输入镜,镀输出激光一定透过率的凹面镜作为输出镜。

这种平凹腔容易形成稳定的输出

模,同时具有高的光光转换效率,但在设计时必须考虑到模式匹配问题。

图4端面泵浦的激光谐振腔形式

如图4所示,则平凹腔中的g参数表示为:

=1,

g2

根据腔的稳定性条件,0:

g1g2<1时腔为稳定腔。

故当L.R2时腔稳定。

同时容易算出其束腰位置在晶体的输入平面上,该处的光斑尺寸为:

W。

本实验中,R1为平面,R2=200mm,L=80mm。

由此可以算出w0大小。

模式匹配,在容易获得基模输出。

l)半导体激光泵浦固体激光器的被动调Q技术

目前常用的调Q方法有电光调Q、声光调Q和被动式可饱和吸收调Q。

本实验采用的Cr4+:

YAG是可饱和吸收调Q的一种,它结构简单,使用方便,无电磁干扰,可获得峰值功率大、脉宽小的巨脉冲。

Cr4+:

YAG被动调Q的工作原理是:

当Cr4+:

YAG被放置在激光谐振腔内时,它的透过率会随着腔内的光强而改变。

在激光振荡的初始阶段,Cr4+:

YAG的透过率较低(初始透过

率),随着泵浦作用增益介质的反转粒子数不断增加,当谐振腔增益等于谐振腔损耗时,反转粒子数达到最大值,此时可饱和吸收体的透过率仍为初始值。

随着泵浦的进一步作用,腔

内光子数不断增加,可饱和吸收体的透过率也逐渐变大,并最终达到饱和。

此时,Cr4+:

YAG

的透过率突然增大,光子数密度迅速增加,激光振荡形成。

腔内光子数密度达到最大值时,激光为最大输出,此后,由于反转粒子的减少,光子数密度也开始减低,则可饱和吸收体Cr4+:

YAG的透过率也开始减低。

当光子数密度降到初始值时,Cr4+:

YAG的透过率也恢复到

初始值,调Q脉冲结束。

m)半导体激光泵浦固体激光器的倍频技术

光波电磁场与非磁性透明电介质相互作用时,光波电场会出现极化现象。

当强光激光产

生后,由此产生的介质极化已不再是与场强呈线性关系,而是明显的表现出二次及更高次的

非线性效应。

倍频现象就是二次非线性效应的一种特例。

本实验中的倍频就是通过倍频晶体

实现对Nd:

YAG输出的1064nm红外激光倍频成532nm绿光。

常用的倍频晶体有KTP、KDP、LBO、BBO和LN等。

其中,KTP晶体在1064nm光附近有高的有效非线性系数,导热性良好,非常适合用于YAG激光的倍频。

KTP晶体属于

负双轴晶体,对它的相位匹配及有效非线性系数的计算,已有大量的理论研究,通过KTP

的色散方程,人们计算出其最佳相位匹配角为:

戈90°,「二二°,对应的有效非线性系数

-12

deff=7.36氷0V/m。

倍频技术通常有腔内倍频和腔外倍频两种。

腔内倍频是指将倍频晶体放置在激光谐振腔

之内,由于腔内具有较高的功率密度,因此较适合于连续运转的固体激光器。

腔外倍频方式

指将倍频晶体放置在激光谐振腔之外的倍频技术,较适合于脉冲运转的固体激光器。

四、实验内容与要求

n)LD安装及系统准直

0)将LD电源接通。

通过上转换片观察LD出射光近场和远场的光斑。

测量LD经快

轴压缩后的阈值电流和输出特性曲线。

p)将耦合系统、激光晶体、输出镜、Q开关、准直器等各元器件安装在调整架和滑块

上;

q)将准直器安装在导轨上,利用直尺将其调整成光束水平出射,中心高度50mm,水

平并且水平入射在激光晶体中心位置;

r)通过调整架旋钮微调耦合系统的倾斜和俯仰,使晶体反射光位于准直器中心,并且

准直光通过晶体后仍垂直进入LD;

s)通过调整架旋钮微调Nd:

YAG晶体的倾斜和俯仰,重复上一步的调节步骤。

t)在准直器前安装T1输出镜,调整旋钮使输出镜的反射光点位于准直器中心。

u)半导体泵浦固体激光器实验

v)

实验装置图

图5半导体泵浦固体激光器实验装置图

w)在准直器前安装T1输出镜,调整旋钮使输出镜的反射光点位于准直器中心。

根据

实验装置图设置其与晶体之间的距离。

打开LD电源,缓慢调节工作电流到1.3A。

微调输出镜倾斜和俯仰使系统出光,然后微调激光晶体、耦合系统,使激光输出得

到最大值;

x)将LD电流调到最小,然后从小到大渐渐增大LD电流,从激光阈值电流开始,每

格0.2A测量一组固体激光器系统输出功率。

结合LD的功率-电流关系,在实验报

告上绘出激光输出功率-泵浦功率曲线;

y)更换为T2输出耦合镜,重复3.b、3.C的步骤,测试不同LD电流下的激光输出功率;

z)根据实验数据和曲线,计算两种耦合输出下的激光斜效率和光光转换效率,并作简

要分析。

aa)半导体泵浦固体激光器调Q实验

 

图6调Q实验装置图

dd)安装Cr4+:

YAG晶体,在准直器前准直后放入谐振腔内。

LD电流调到1.7A,观察

输出的平均功率,微调调整架,使激光输出平均功率最大;

ee)降低LD电流到零。

然后从小到大缓慢增加,测量1.7A、2.0A、2.3A时输出脉冲

的平均功率;

ff)安装探测器,取三个不同的LD工作电流(1.7A、2.0A、2.3A),分别测量输出脉

冲的脉宽、重频;

gg)计算不同功率下的峰值功率,对不同功率下的输出脉冲进行对比,并作简要分析。

hh)半导体泵浦固体激光器倍频实验

图7倍频实验装置图

kk)将输出镜换为短波通输出镜,微调调整架使其反射光点在准直器中心。

打开LD电

源,取工作电流1.7A,微调输出镜、激光晶体、耦合系统的旋钮,使输出激光功率最大;

II)安装KTP晶体(或LBO),在准直器前准直后放入谐振腔内,倍频晶体尽量靠近激光晶体。

调节调整架,使得输出绿光功率最亮;然后旋转KTP晶体(或LBO),

观察旋转过程中绿光输出有何变化;

五、实验结果与思考

1.什么是半导体泵浦固体激光器中的光谱匹配和模式匹配?

2.可饱和吸收调Q中的激光脉宽、重复频率随泵浦功率如何变化?

为什么?

3.把倍频晶体放在激光谐振腔内对提高倍频效率有何好处?

半导体泵浦固体激光器注意事项

1.半导体激光器(LD)对环境有较高要求,因此本实验系统需放置于洁净实验

室内。

实验完成后,应及时盖上仪器罩,以免LD沾染灰尘。

2.LD对静电非常敏感。

所以严禁随意拆装LD和用手直接触摸LD外壳。

如果

确实需要拆装,请带上静电环操作,并将拆下的LD两个电极立即短接。

3.不要自行拆装LD电源。

电源如果出现问题,请与产家联系。

同时,LD电源的控制温度已经设定,对应于LD的最佳泵浦波长,请不要自行更改。

4.LD、耦合系统、激光晶体,两两滑块之间距离大约为32mm、8mm,经调整

好以后最好不要随意变动,以免影响实验使用。

5.准直好光路后需用遮挡物(如功率计或硬纸片)挡住准直器,避免准直器被输出的红外激光打坏。

6.实验过程避免双眼直视激光光路。

人眼不要与光路处与同一高度,最好能带上激光防护镜操作。

典型实验结果(参考):

T1=5%,T2=10%

LD电流

(A)

快轴压缩后

功率(W)

T1输出

(W)

T2输出

(W)

调Q输出

(mW)

脉宽

(ns)

重频

(kHz)

0.5

0.077

0.7

0.230

0.068

0.046

0.9

0.390

0.151

0.112

1.1

0.537

0.223

0.183

1.3

0.694

0.293

0.241

25.6

1.5

0.847

0.356

0.297

55.2

~90

~3.77

1.7

0.995

0.401

0.347

82.3

~100

~6.96

1.9

1.148

0.432

0.383

112.8

~105

~10.13

2.1

1.301

0.466

0.409

133.8

~115

~12.74

2.3

1.453

0.496

0.444

144.2

~120

~14.04

2.5

1.601

0.544

0.483

151.3

~130

~14.69

 

2.0

4

0

W/率功出

 

泵浦功率/W

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1