ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:225.01KB ,
资源ID:5717191      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/5717191.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专业实验实验二半导体泵浦固体激光器综合实验.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

专业实验实验二半导体泵浦固体激光器综合实验.docx

1、专业实验实验二半导体泵浦固体激光器综合实验半导体泵浦固体激光器综合实验实验讲义大恒新纪元科技股份有限公司版权所有 不得翻印半导体泵浦固体激光器综合实验一、 前言半导体泵浦固体激光器 ( Diode-Pumped solid-state Laser ,DPL ),是以激光二极管 (LD) 代替闪光灯泵浦固体激光介质的固体激光器,具有效率高、体积小、寿命长等一系列优点, 在光通信、 激光雷达、激光医学、激光加工等方面有巨大应用前景,是未来固体激光器的发 展方向。本实验的目的是熟悉半导体泵浦固体激光器的基本原理和调试技术,以及其调 Q 和倍频的原理和技术。二、 实验目的a)掌握半导体泵浦固体激光器的

2、工作原理和调试方法;b)掌握固体激光器被动调 Q的工作原理,进行调 Q脉冲的测量;c)了解固体激光器倍频的基本原理。三、 实验原理与装置d)半导体激光泵浦固体激光器工作原理:上世纪80年代起,生长半导体激光器(LD )技术得到了蓬勃发展,使得 LD的功率和 效率有了极大的提高, 也极大地促进了 DPSL 技术的发展。与闪光灯泵浦的固体激光器相比, DPSL 的效率大大提高,体积大大减小。在使用中,由于泵浦源 LD 的光束发散角较大,为使其聚焦在增益介质上,必须对泵浦光束进行光束变换(耦合) 。泵浦耦合方式主要有端面泵浦和侧面泵浦两种, 其中端面泵浦方式适用于中小功率固体激光器, 具有体积小、

3、结构简 单、空间模式匹配好等优点。 侧面泵浦方式主要应用于大功率激光器。 本实验采用端面泵浦 方式。端面泵浦耦合通常有直接耦合和间接耦合两种方式。e)直接耦合: 将半导体激光器的发光面紧贴增益介质, 使泵浦光束在尚未发散开之前便被增益介质吸收, 泵浦源和增益介质之间无光学系统, 这种耦合方式称为直接耦 合方式。直接耦合方式结构紧凑,但是在实际应用中较难实现,并且容易对 LD 造成损伤。f)间接耦合:指先将 LD 输出的光束进行准直、整形,再进行端面泵浦。常见的方法 有:g)组合透镜系统聚光:用球面透镜组合或者柱面透镜组合进行耦合。h)自聚焦透镜耦合: 由自聚焦透镜取代组合透镜进行耦合, 优点是

4、结构简单, 准直光 斑的大小取决于自聚焦透镜的数值孔径。i)光纤耦合:指用带尾纤输出的 LD 进行泵浦耦合。优点是结构灵活。 本实验先用光纤柱透镜对半导体激光器进行快轴准直, 压缩发散角, 然后采用组合透镜对泵浦光束进行整形变换, 各透镜表面均镀对泵浦光的增透膜, 耦合效率高。 本实验的压缩 和耦合如图 2 所示。图1半导体激光泵浦固体激光器的常用耦合方式1直接耦合 2组合透镜耦合 3自聚焦透镜耦合 4光纤耦合图2 本实验LD光束快轴压缩耦合泵浦简图j) 激光晶体图3 Nd:YAG 晶体中Nd+吸收光谱图激光晶体是影响 DPL激光器性能的重要器件。为了获得高效率的激光输出,在一定运转方式下选择

5、合适的激光晶体是非常重要的。 目前已经有上百种晶体作为增益介质实现了连续波和脉冲激光运转,以钕离子( Nd3+)作为激活粒子的钕激光器是使用最广泛的激光器。其中,以Nd3+离子部分取代 Y3AI5O12晶体中丫3+离子的掺钕钇铝石榴石(Nd:YAG),由于具有量子效率高、受激辐射截面大、光学质量好、热导率高、容易生长等的优点,成为目前应用最广泛的LD泵浦的理想激光晶体之一。 Nd:YAG晶体的吸收光谱如图 3所示。从Nd:YAG的吸收光谱图我们可以看出, Nd:YAG在807.5nm处有一强吸收峰。 我们如果选择波长与之匹配的 LD作为泵浦源,就可获得高的输出功率和泵浦效率, 这时我们称实现了

6、光谱匹配。但是,LD的输出激光波长受温度的影响,温度变化时,输出激光波长会产 生漂移,输出功率也会发生变化。因此,为了获得稳定的波长,需采用具备精确控温的 LD电源,并把LD的温度设置好,使 LD工作时的波长与 Nd:YAG的吸收峰匹配。另外,在实际的激光器设计中, 除了吸收波长和出射波长外, 选择激光晶体时还需要考虑掺杂浓度、上能级寿命、热导率、发射截面、吸收截面、吸收带宽等多种因素。k) 端面泵浦固体激光器的模式匹配技术图4是典型的平凹腔型结构图。激光晶体的一面镀泵浦光增透和输出激光全反膜,并 作为输入镜,镀输出激光一定透过率的凹面镜作为输出镜。 这种平凹腔容易形成稳定的输出模,同时具有高

7、的光光转换效率,但在设计时必须考虑到模式匹配问题。图4端面泵浦的激光谐振腔形式如图4所示,则平凹腔中的 g参数表示为:=1,g2根据腔的稳定性条件, 0 : g1g2 1时腔为稳定腔。故当 L . R2时腔稳定。同时容易算出其束腰位置在晶体的输入平面上,该处的光斑尺寸为:W。二本实验中,R1为平面,R2=200mm, L=80mm。由此可以算出 w0大小。模式匹配,在容易获得基模输出。l) 半导体激光泵浦固体激光器的被动调 Q技术目前常用的调 Q方法有电光调 Q、声光调Q和被动式可饱和吸收调 Q。本实验采用的 Cr4+:YAG是可饱和吸收调 Q的一种,它结构简单,使用方便,无电磁干扰,可获得峰

8、值功 率大、脉宽小的巨脉冲。Cr4+:YAG被动调Q的工作原理是:当 Cr4+:YAG被放置在激光谐振腔内时,它的透过 率会随着腔内的光强而改变。在激光振荡的初始阶段, Cr4+:YAG的透过率较低(初始透过率),随着泵浦作用增益介质的反转粒子数不断增加,当谐振腔增益等于谐振腔损耗时,反 转粒子数达到最大值,此时可饱和吸收体的透过率仍为初始值。 随着泵浦的进一步作用,腔内光子数不断增加, 可饱和吸收体的透过率也逐渐变大, 并最终达到饱和。 此时,Cr4+:YAG的透过率突然增大,光子数密度迅速增加,激光振荡形成。腔内光子数密度达到最大值时, 激光为最大输出,此后,由于反转粒子的减少,光子数密度

9、也开始减低,则可饱和吸收体 Cr4+:YAG的透过率也开始减低。当光子数密度降到初始值时, Cr4+:YAG的透过率也恢复到初始值,调Q脉冲结束。m) 半导体激光泵浦固体激光器的倍频技术光波电磁场与非磁性透明电介质相互作用时, 光波电场会出现极化现象。 当强光激光产生后,由此产生的介质极化已不再是与场强呈线性关系, 而是明显的表现出二次及更高次的非线性效应。倍频现象就是二次非线性效应的一种特例。 本实验中的倍频就是通过倍频晶体实现对Nd:YAG输出的1064nm红外激光倍频成 532nm绿光。常用的倍频晶体有 KTP、KDP、LBO、BBO和LN等。其中,KTP晶体在1064nm光 附近有高的

10、有效非线性系数,导热性良好,非常适合用于 YAG激光的倍频。KTP晶体属于负双轴晶体,对它的相位匹配及有效非线性系数的计算,已有大量的理论研究,通过 KTP的色散方程,人们计算出其最佳相位匹配角为: 戈90,二二,对应的有效非线性系数-12deff=7.36 氷0 V/m。倍频技术通常有腔内倍频和腔外倍频两种。 腔内倍频是指将倍频晶体放置在激光谐振腔之内,由于腔内具有较高的功率密度, 因此较适合于连续运转的固体激光器。 腔外倍频方式指将倍频晶体放置在激光谐振腔之外的倍频技术,较适合于脉冲运转的固体激光器。四、 实验内容与要求n) LD安装及系统准直0) 将LD电源接通。通过上转换片观察 LD出

11、射光近场和远场的光斑。测量 LD经快轴压缩后的阈值电流和输出特性曲线。p) 将耦合系统、激光晶体、输出镜、 Q开关、准直器等各元器件安装在调整架和滑块上;q) 将准直器安装在导轨上,利用直尺将其调整成光束水平出射,中心高度 50mm,水平并且水平入射在激光晶体中心位置;r) 通过调整架旋钮微调耦合系统的倾斜和俯仰, 使晶体反射光位于准直器中心,并且准直光通过晶体后仍垂直进入 LD ;s) 通过调整架旋钮微调 Nd:YAG晶体的倾斜和俯仰,重复上一步的调节步骤。t) 在准直器前安装T1输出镜,调整旋钮使输出镜的反射光点位于准直器中心。u) 半导体泵浦固体激光器实验v)实验装置图图5半导体泵浦固体

12、激光器实验装置图w) 在准直器前安装T1输出镜,调整旋钮使输出镜的反射光点位于准直器中心。根据实验装置图设置其与晶体之间的距离。打开 LD电源,缓慢调节工作电流到 1.3A。微调输出镜倾斜和俯仰使系统出光, 然后微调激光晶体、耦合系统,使激光输出得到最大值;x)将LD电流调到最小,然后从小到大渐渐增大 LD电流,从激光阈值电流开始,每格0.2A测量一组固体激光器系统输出功率。结合 LD的功率-电流关系,在实验报告上绘出激光输出功率-泵浦功率曲线;y) 更换为T2输出耦合镜,重复 3.b、3.C的步骤,测试不同 LD电流下的激光输出功 率;z) 根据实验数据和曲线, 计算两种耦合输出下的激光斜效

13、率和光光转换效率, 并作简要分析。aa)半导体泵浦固体激光器调 Q实验图6调Q实验装置图dd)安装Cr4+:YAG晶体,在准直器前准直后放入谐振腔内。 LD电流调到1.7A,观察输出的平均功率,微调调整架,使激光输出平均功率最大;ee)降低LD电流到零。然后从小到大缓慢增加,测量 1.7A、2.0A、2.3A时输出脉冲的平均功率;ff)安装探测器,取三个不同的 LD工作电流(1.7A、2.0A、2.3A),分别测量输出脉冲的脉宽、重频;gg)计算不同功率下的峰值功率,对不同功率下的输出脉冲进行对比,并作简要分析。hh)半导体泵浦固体激光器倍频实验图7倍频实验装置图kk)将输出镜换为短波通输出镜

14、,微调调整架使其反射光点在准直器中心。 打开LD电源,取工作电流 1.7A,微调输出镜、激光晶体、耦合系统的旋钮,使输出激光功 率最大;II) 安装KTP晶体(或LBO ),在准直器前准直后放入谐振腔内,倍频晶体尽量靠近 激光晶体。调节调整架,使得输出绿光功率最亮;然后旋转 KTP晶体(或LBO ),观察旋转过程中绿光输出有何变化;五、 实验结果与思考1.什么是半导体泵浦固体激光器中的光谱匹配和模式匹配?2.可饱和吸收调 Q中的激光脉宽、重复频率随泵浦功率如何变化?为什么?3.把倍频晶体放在激光谐振腔内对提高倍频效率有何好处?半导体泵浦固体激光器注意事项1.半导体激光器(LD)对环境有较高要求

15、,因此本实验系统需放置于洁净实验室内。实验完成后,应及时盖上仪器罩,以免 LD沾染灰尘。2.LD对静电非常敏感。所以严禁随意拆装LD和用手直接触摸LD外壳。如果确实需要拆装,请带上静电环操作,并将拆下的 LD两个电极立即短接。3.不要自行拆装LD电源。电源如果出现问题,请与产家联系。同时, LD电 源的控制温度已经设定,对应于 LD的最佳泵浦波长,请不要自行更改。4.LD、耦合系统、激光晶体,两两滑块之间距离大约为 32mm、8mm,经调整好以后最好不要随意变动,以免影响实验使用。5.准直好光路后需用遮挡物(如功率计或硬纸片)挡住准直器,避免准直器被 输出的红外激光打坏。6.实验过程避免双眼直

16、视激光光路。人眼不要与光路处与同一高度,最好能带 上激光防护镜操作。典型实验结果(参考):T1=5%, T2=10%LD电流(A)快轴压缩后功率(W)T1输出(W)T2输出(W)调Q输出(mW)脉宽(ns)重频(kHz)0.50.0770.70.2300.0680.0460.90.3900.1510.1121.10.5370.2230.1831.30.6940.2930.24125.61.50.8470.3560.29755.2903.771.70.9950.4010.34782.31006.961.91.1480.4320.383112.810510.132.11.3010.4660.409133.811512.742.31.4530.4960.444144.212014.042.51.6010.5440.483151.313014.692.040W/率功出泵浦功率/W

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1