江西10吨萃取脱酚处理工艺说明.docx

上传人:b****5 文档编号:5714599 上传时间:2022-12-31 格式:DOCX 页数:11 大小:21.25KB
下载 相关 举报
江西10吨萃取脱酚处理工艺说明.docx_第1页
第1页 / 共11页
江西10吨萃取脱酚处理工艺说明.docx_第2页
第2页 / 共11页
江西10吨萃取脱酚处理工艺说明.docx_第3页
第3页 / 共11页
江西10吨萃取脱酚处理工艺说明.docx_第4页
第4页 / 共11页
江西10吨萃取脱酚处理工艺说明.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

江西10吨萃取脱酚处理工艺说明.docx

《江西10吨萃取脱酚处理工艺说明.docx》由会员分享,可在线阅读,更多相关《江西10吨萃取脱酚处理工艺说明.docx(11页珍藏版)》请在冰豆网上搜索。

江西10吨萃取脱酚处理工艺说明.docx

江西10吨萃取脱酚处理工艺说明

江西10吨萃取脱酚处理工艺说明

310m/h萃取脱酚蒸氨系统工艺说明

一、废水萃取脱酚处理工段:

1、项目概况

3项目名称:

10m/h兰炭废水萃取脱酚处理工段

项目地点:

新疆淖毛湖

310m/h兰炭废水萃取脱酚处理,在萃取脱酚处理前段已进行除油和蒸氨预处理,石油类含量低于50mg/L,氨氮含量低于3000mg/L。

2、处理水质水量

3处理水量:

10m/h

进水水质:

挥发酚?

5000mg/L

出水水质:

挥发酚?

200mg/L

3、处理工艺

3.1水质情况

兰炭废水中含有苯酚、甲酚二甲酚、邻位甲酚、间位酚、氨基酚、硝基酚等及多种高级酚包括三甲酚、乙基酚、丙基酚、丁基酚、苯二酚、萘酚、菲酚及蒽酚等等,沸点范围从180?

至350?

甚至更高,挥发酚浓度5000mg/L左右,总酚则达到挥发酚的3~4倍。

如此浓度的含酚量只能采取先萃取后生化的脱酚办法。

萃取脱酚就是利用酚在废水和萃取剂(与水互不相溶)中溶解度或分配系数的不同,使酚从废水内转移到萃取剂中。

经过反复多次萃取,将绝大部分的酚提取出来。

本工段即是废水的萃取脱酚工段,对于总体的废水处理工程,相当于预处理脱酚。

3.2兰炭专用萃取剂

3.2.1含酚萃取的介绍

1.酚的回收

目前为止,国内外去除或降低煤焦油加氢废水中酚含量的方法很多,但主要有两个基本途径:

一是从生产工艺着手,尽可能改革工艺,降低污染物浓度,减少废水量,并循环或重复使用生产水,使废水趋于“零排放”;二是当含酚废水是盈水循环系统时,采用回收利用或处理方式解决外排废水。

对于酚的回收,通常采用的方法有两种:

一是溶剂萃取法;二是蒸气脱酚法。

表1.4-1列举了几种萃取剂的性能比较,采用酚回收时建议根据实际情况尽量采用优质高效的萃取剂。

第1页

表1.4-1:

几种萃取剂的性能比较

溶剂名称分配系数相对密度性能说明

重苯溶剂油2.470.885不易乳化和挥发~萃取效率大于80%~但有二次污染

萃取效率大于80%~油水易分离~但毒性大~二次污染二甲苯溶剂油2~30.845严重

粗苯2~30.875~0.880萃取效率大于85~90%~易挥发~有二次污染

焦油洗油14~161.03~1.07萃取效率高~操作安全~但乳化严重~不易分层

酮类萃取8~100.804~0.809萃取效率高大于92%~二次污染少~分离麻烦

异丙醚200.728萃取效率高大于95%~不需要碱反萃取络合萃取剂100.825~0.85不易乳化和挥发~萃取效率大于99%~二次污染少

采用水蒸气直接蒸出废水中的挥发酚,然后用碱液吸收随水蒸气带出的酚蒸气,成为酚钠盐溶液,再经中和与精馏,使废水中的酚得到回收,这就是水蒸气脱酚法。

蒸气脱酚能耗大、效率低、蒸出物杂质成分多、酚回收成本高,故不作为酚回收的主流工艺。

含酚废水经回收酚后,外排水中仍含有数百毫克/升以上的剩余酚量,还不能直接排放,必须进行无害化处理,目前常用的是生化处理法。

2.总酚的去除

煤焦化油废水中含有苯酚、甲酚二甲酚、邻位甲酚、间位酚、氨基酚、硝基酚等及多种高级酚包括三甲酚、乙基酚、丙基酚、丁基酚、苯二酚、萘酚、菲酚及蒽酚等等,沸点范围从180?

至350?

甚至更高。

只能采取先萃取脱酚再生化脱酚的办法,如采用蒸气脱酚法,因酚种类的复杂性、沸点范围宽等因数,去除效率低;另外蒸汽脱酚的同时氨也将带出,将使酚的回收利用变的更加复杂麻烦。

萃取脱酚就是利用酚在废水和萃取剂(与水互不相溶)中溶解度或分配系数的不同,使酚从废水内转移到萃取剂中。

经过反复多次萃取,将绝大部分的酚提取出来。

根据以往经验,经单级萃取方式处理后的废水中仍含酚约100~200mg/L,此部分酚继续采用萃取以无实际意义,此时适合采用生化处理的办法。

生化处理就是利用微生物将酚类物质转化为HO、CO、H等无机物,从而消除酚的222

影响。

项目废水中高浓度污染废水的酚含量达5000mg/L左右,属于高浓度含酚废水,适合采用萃取加生化处理的脱酚工艺。

兰炭废水专用萃取剂利用可逆络合反应的萃取分离原理,通过复合型萃取溶剂的选择与工艺性实验的研究,设计了包含具有Lewis碱官能团的络合剂在内的复合型络合萃取剂,探索通过单一的萃取操作使煤气化含酚废水达到生产回用,实现封闭循环的工艺可行性。

该技术用于处理含酚废水

第2页

为国内首创。

因此含酚废水采用一种处理工艺简单、处理成本低、酚类可以回收利用的新工艺是非常有意义的。

煤焦化废水专用萃取剂主要物性数据:

3密度:

0.825—0.85kg/m

粘度:

2.12X10,3Pa..S

-2界面张力(与水):

1.12×10N/m

水中溶解度:

0.1g/l(25?

PH:

~7

单级接触除酚率:

(初始酚含量大于5000mg/L)>99%

毒性:

(白鼠口服LD值)21.9g/kg50

与溶剂平称衡的水相总碳值比较:

(TOC:

mg/L)

PH=1.5„„229.5

PH=11„„305.9

3.萃取剂的选取

针对各类焦化、兰炭、煤焦油加工、煤焦油加氢、粉煤干馏、煤气发生炉、煤气化等煤化工含酚废水进行了系统的相平衡试验、错流萃取串级试验和连续逆流萃取试验研究;针对本项目为园区煤化工废水的特点,园区集中为:

兰炭、粉煤干馏、煤气化的含酚废水,并以兰炭废水为主,完成了络合剂的设计你并选择使用了有协萃效应的稀释剂,最终研究出单位DW-3系列高效的混合型络合萃取剂。

根据DW-3络合萃取剂对含酚焦化废水的萃取的相平衡关系曲线。

十分明显,与脱酚溶剂、重苯、甲基正丁基甲酮、异丙醚相比,DW-3混合型络合萃取剂有明显优势。

水相平衡浓度为0.5mg/L时,分配系数仍有10左右,这就可能满足单级萃取达到排放标准的要求。

采用DW-3络合萃取剂针对五十多个厂家不同生产工艺的煤化工含酚废水进行了错流萃取试验,研究结果表明,络合萃取法处理工业含酚废水是可行的,并具有一定的普适性。

尤其是DW-3系列萃取剂更适合中高浓度的煤化工园区废水。

DW-3混合型络合萃取剂处理工业含酚废水,经单一萃取操作可以达到国家规定的排放标准,且根据实验和现场大工程使用表明:

一般单级萃取后废水含酚量小于200mg/l。

3.萃取剂的要求

a.选用萃取剂的名称:

DW-3含酚络合萃取剂,密度:

0.85,含量99.9%

b.:

进水水质含酚2500-5000mg/l,出水含酚《200mg/l,去除效率《95%。

并可以B/C比提高,

第3页

使生化性大大提高,使最总出水更好。

DW-3脱酚萃取剂技术要求

1.进水指标:

石油类?

50mg/L;SS?

50mg/L;挥发酚?

5000mg/L;PH=3。

2.出口指标:

挥发酚?

200mg/L;石油类?

20mg/L;SS?

50mg/L;PH=4-6。

3.萃取前进水要求:

挥发酚?

5000mg/L;石油类?

50mg/L;PH=3左右。

4.萃取剂性能

DW-3萃取剂主要物性数据:

a)密度:

0.825—0.85kg/m?

b)粘度:

2.12×10-3Pa.S

c)界面张力(与水):

1.12×10-2N/m

d)水中溶解度:

0.1g/l(25?

e)单级接触除酚率:

(初始酚含量大于2500PPm),99,

f)单级接触除多元酚率:

(初始酚含量大于2500PPm),95,

g)溶剂损失小于万分之二,操作中两相分层迅速,不易乳化。

5.适用处理水质:

中浓度含酚煤化工废水,处理浓度:

2000-5000mg/l。

6.适用处理工艺:

低压栅式逆流萃取塔连续运行工艺。

3.3萃取工艺流程

经除油、蒸氨后的含酚废水先经调酸池收集和调节PH值,再提升至萃取塔与萃取剂进行萃取反应。

萃取塔萃出液经萃出液槽收集后提升至后处理系统处理,萃取相经观察槽收集后提升至反萃塔,与碱液进行反萃反应,形成的酚纳盐自流至酚盐池,再提升输送出界区。

经反萃塔反萃后的萃取剂经过渡槽收集后提升至萃取剂槽循环使用。

简要流程如下:

含酚废水硫酸氢氧化钠萃取剂

酸液罐碱液罐萃取剂罐

泵调酸池泵泵

反萃取塔过渡槽泵泵

酚盐池泵萃取塔观察槽

第4页

泵萃出液槽

4、萃取工艺设计

4.1调酸池

用途:

收集含酚废水、调节PH值;数量:

1座;

结构:

钢砼;

埋深:

根据前级来水标高或压力确定埋深;

3设计规模:

Q=10m/h;

建筑物尺寸:

L×B×H=2m×4m×6m;

3有效水深5.00m,有效容积为40m,总水力停留时间4.0h。

4.2萃取塔

用途:

萃取反应场所;

数量:

1台;

结构:

不锈钢;

埋深:

地上设备;

3设计规模:

Q=10m/h?

台;

设备尺寸:

Φ×H=2.0m×18m;

3有效水深17.5m,有效容积为40m,总水力停留时间4.0h。

4.3萃出液槽

用途:

萃出液收集,便于流速和流向控制;数量:

1台;

结构:

不锈钢;

埋深:

地上设备;

3设计规模:

Q=10m/h?

台;

设备尺寸:

Φ×H=1.8m×3m;

3有效水深2.5m,有效容积为5m,总水力停留时间30min。

4.4观察槽

用途:

萃取相收集,便于设置提升设备;数量:

1台;

第5页

结构:

不锈钢;

埋深:

地上设备;

3设计规模:

Q=10m/h?

台;

设备尺寸:

Φ×H=1.8m×3m;

3有效水深2.5m,有效容积为5m,总水力停留时间30min。

4.5反萃塔

用途:

萃取剂再生场所;

数量:

2台;

结构:

不锈钢;

埋深:

地上设备;

3设计规模:

Q=10m/h?

台;

设备尺寸:

Φ×H=1.8m×12m;

3有效水深11.5m,有效容积为20m,总水力停留时间2.0h。

4.6酚盐池

用途:

收集酚纳盐;

数量:

1座;

结构:

钢砼;

埋深:

全埋地;

建筑物尺寸:

L×B×H=3m×4m×6m;

3有效水深5.00m,有效容积为60m,总水力停留时间10d。

4.7过渡槽

用途:

再生萃取液收集,便于设置提升设备;数量:

1台;

结构:

不锈钢;

埋深:

地上设备;

3设计规模:

Q=10m/h?

台;

设备尺寸:

Φ×H=1.8m×3m;

3有效水深2.5m,有效容积为5m,总水力停留时间30min。

第6页

二、废水蒸氨处理工段:

1建设单位:

宜兴市伟成环保有限公司

2设计基础条件:

原料组成一:

酚氨废水

项目单位分析结果项目单位分析结果CODmg/L8000悬浮物mg/L?

10氨氮mg/L2000~3000HCNmg/L30~60挥发酚mg/L200焦油1000~?

50总酚mg/L400硫化物mg/L?

50原料组成一:

含油废水

项目单位分析结果项目单位分析结果CODmg/L2500悬浮物mg/L?

10氨氮mg/L~150HCNmg/L~20挥发酚mg/L~200焦油1000~~50总酚mg/L400硫化物mg/L备注:

废水性质和焦化废水差不多。

2)处理能力:

酚氨废水5m3/h,含油废水5m3/h,共10m3/h。

3)处理要求:

出水氨氮?

200mg/l。

3公用工程条件:

3.1循环水:

供水压力:

0.4MPa(G);回水压力:

0.25MPa(G)供水温度:

25?

—32?

;回水温度:

33?

—40?

PH值:

7,8

3.2饱和水蒸气:

装置采用饱和水蒸气加热,到设备上的蒸汽压力保证在0.3MPa(G)。

3.3电力:

电压380V/220V

频率50HZ

负荷?

kWh

3.4仪表空气:

第7页

进界区压力P=0.6MPa

进界区温度T=常温

耗量Q=Nm?

/h

3.5氮气:

进界区压力P=0.6MPa

进界区温度T=常温

耗量Q=Nm?

/h

备注:

主要用途为压力试验检验、系统开停车置换。

3.6现场安装环境:

1)采用室外钢结构或钢混平台,符合化工安全生产要求。

2)符合安全、环保、消防、卫生防护等要求。

4、工艺设计说明

4.1精馏原理:

精馏是将由挥发度不同的组分所组成的混合液,在精馏塔中同时多次的进行部分汽化和部分冷凝,使其分离成几乎纯态组份的过程。

精馏装置中,蒸汽上升至精馏塔内,在每层塔板上回流液体与上升蒸汽互相接触,进行热和质的传递过程。

在塔板上由于存在温度差和浓度差,气相就要进行部分冷凝,使其中部分难挥发组分转入液相中;而气相冷凝释放出的潜热传给液相,使液相部分汽化,其中部分易挥发组分转入气相中。

总的结果致使离开此层塔板的液相中易挥发组分的浓度较进入该板时的低,而离开的气相中易挥发组分浓度又较进入的高。

若气液两相在板上接触时间足够长,那么离开该板的气液两相互成平衡。

精馏塔的每层板上都进行着上述相似的过程。

4.2设计说明:

根据实验数据及与业主交流,采用专业的化工模拟软件进行工艺计算及工艺优化设计,结合丰富的工程设计及实践经验,确定本设计方案。

装置采用常压连续精馏操作工艺,在塔顶采出高浓废水,在塔釜得到符合要求的脱除氨氮的废水。

第8页

考虑废水成分的复杂性及工程应用经验,本蒸氨塔采用复合精馏塔,提馏段采用新型组合导向浮阀塔;提馏段采用填料塔。

建议废水进料前调整PH值=~10,提高氨氮脱除效果。

装置的主要运行能耗为水蒸气,考虑到能量的综合利用,针对原料进行了二级换热,一级换热与塔顶二次蒸汽换热、二级换热与塔底采出废水换热。

4.3工艺流程模拟:

4.3.1模拟流程图:

(暂略)

4.3.2模拟流程物流表:

(暂略)

4.3.3工艺流程简述:

本装置采用单塔连续精馏操作工艺,精馏塔采用常压操作,在塔顶采出高浓废水,在塔釜得到符合要求的脱除氨氮的废水。

工艺流程简述如下:

界区外来的原料废水经原料进料泵(P-1101a/b)输送,通过进料管线上设置的流量自控回路控制稳定进料,高浓废水原料首先与精馏塔(T-1101)塔顶蒸汽通过一级换热器(E-1101)一级换热升温至?

,然后与塔釜采出物料通过二级换热器(E-1104)进行二级换热升温至?

,然后在精馏塔(T-1101)的中上部进料,落入精馏塔(T-1101)塔釜的物料经水蒸汽加热汽化后上升至塔顶,塔顶蒸汽经一级换热器(E-1101)冷凝部分蒸汽,而后经塔顶冷凝器(E-1102)冷凝全部冷凝为液相收集在回流罐(V-1101)中,回流罐内的冷凝液经回流泵(P-1104a/b)输送,一部分作为回流返回精馏塔(T-1101),上升的蒸汽与回流的液体在精馏塔(T-1101)内进行热质传递,形成稳定的浓度梯度与温度梯度;另一部分经塔顶冷却器(E-1103)降温采出至界区外高浓废水储罐。

精馏塔(T-1101)塔釜废水经塔底采出泵(P-1103a/b)输送,通过二级换热器(E-1103)与原料换热降温,再经过塔釜冷却器(E-1105)冷却后至?

45?

后送至界区外生化处理工段。

考虑到装置能耗费用,进料原料与不同品味的热源进行了二次换热,原料首先与塔顶蒸汽进行一次换热,将温度提到?

;然后与塔釜采出物料进行了二次换热,将温度提高到?

,降低了能耗,减少了设备的运行费用。

第9页

4.3.4工艺管道及仪表流程示意图

详见图纸。

5、设备说明

5.1设备选型说明:

主体非标设备的基本选型如下:

1)精馏塔采用混合塔,精馏段采用填料塔,内装有高效金属波纹填料,分布器采用操作弹性大、压降低、分布效果良好的新型气液收集、分布器。

提留段采用板式塔,塔盘采用效率高、压降小的组合导向浮阀塔盘。

2)一级换热器(E-1101)、冷凝器(E-1102)采用卧式固定管板管壳式换热器。

3)二级换热器(E-1104)、塔顶冷却器(E-1103)、塔釜冷却器(E-1105)采用板式换热器。

4)回流罐(V-1101)选用立式双椭圆封头结构。

5.2材料选用说明:

为了保证物料的洁净及设备的耐腐蚀性能,选材如下:

1)与物料接触的设备主体材料均采用不锈钢材料S30408(SUS304),与循环水接触的材料采用Q235B材质,与加热蒸汽接触的采用Q345R材质。

2)所有与物料接触的垫片采用F4或不锈钢缠绕F4材料。

3)要求所有与物料接触管道、管件、阀门、附件均采用相应的不锈钢材料S30408

(SUS304)。

5.3制造检验说明:

为了保证产品质量指标,对设备的制造检验提出了较高要求:

1)遵循的主要法规和标准:

TSGR0004-2009《固定式压力容器安全技术监察规程》

GB150-2011《压力容器》

GB151-1999《管壳式换热器》

JB/T4710《塔式容器》

第10页

2)我公司具有压力容器设计资质、压力容器制造资质。

建立有完善的设计、制造质量保证体系,从设计、材料、成型、焊接、探伤、压力试验等各环节严格控制,确保产品质量。

5.4主体设备明细表:

5.4.1非标设备一览表:

序设备名与物料接触数量位号设备规格备注号称材料材质(台)

工作压力:

P=常压精馏段:

工作温度:

T?

120?

DN800/DN1000S304081T-1101蒸氨塔1工作介质:

废水H?

28m提馏段:

含填料、内件、塔盘S30408整体供货

管程:

工作压力:

P=0.4MPa(G)

工作温度:

T?

50?

管程:

S30408工作介质:

原料废水一级换壳程:

S304082E-1101F=40?

1壳程:

热器换热管:

工作压力:

P=常压S30408工作温度:

T?

120?

工作介质:

高浓废水

卧式固定管板管壳式

换热器

管程:

工作压力:

P=0.4MPa

工作温度:

T=32?

/40?

管程:

Q235B工作介质:

循环水塔顶冷壳程:

S304083E-1102F=80m21壳程:

凝器换热管:

工作压力:

P=常压S30408工作温度:

T?

120?

工作介质:

高浓废水

卧式固定管板管壳式

换热器

冷侧:

工作压力:

P=0.4MPa

工作温度:

T=32?

塔顶冷/40?

4E-1103F=6?

S304081却器工作介质:

循环水

热侧:

工作压力:

P=常压

工作温度:

T?

80?

第11页

工作介质:

高浓废水板式换热器

冷侧:

工作压力:

P=0.4MPa工作温度:

T?

80?

工作介质:

废水二级换5E-1104F=30m2S304081热侧:

热器工作压力:

P=0.4MPa工作温度:

T?

120?

工作介质:

废水板式换热器

第12页

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 材料科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1