Chapter 6Energy and Nutrient Relations.docx

上传人:b****6 文档编号:5675467 上传时间:2022-12-31 格式:DOCX 页数:37 大小:53.20KB
下载 相关 举报
Chapter 6Energy and Nutrient Relations.docx_第1页
第1页 / 共37页
Chapter 6Energy and Nutrient Relations.docx_第2页
第2页 / 共37页
Chapter 6Energy and Nutrient Relations.docx_第3页
第3页 / 共37页
Chapter 6Energy and Nutrient Relations.docx_第4页
第4页 / 共37页
Chapter 6Energy and Nutrient Relations.docx_第5页
第5页 / 共37页
点击查看更多>>
下载资源
资源描述

Chapter 6Energy and Nutrient Relations.docx

《Chapter 6Energy and Nutrient Relations.docx》由会员分享,可在线阅读,更多相关《Chapter 6Energy and Nutrient Relations.docx(37页珍藏版)》请在冰豆网上搜索。

Chapter 6Energy and Nutrient Relations.docx

Chapter6EnergyandNutrientRelations

Chapeter6EnergyandNutrientRelations

Ascorpionfishlieshalfburiedinthesandneartheedgeofacoralreef;theonlycluestoitspresencearethetelltalemovementsofitsgillcovers.Itsheadlookssomuchlikeanalgae-coveredstonethatseveraltinyshrimpgatheroveritandswimlazilyinthecurrent.Asmallfishonthenearbyreefseestheshrimpanddartsovertofeedonthem.Thescorpionfishopensitsmouthandswallowsthesmallfishinalightningquickmovement.However,beforethescorpionfishcansettlebackintothesand.agreenmorayeel,nearly2mlong,dartsfromthereef,grabsthescorpionfishwithitsrazor-sharpteeth,andswallowsit(fig.6.1).

FIGURE6.1Themorayeelmeetsitsenergyandnutrientneedsbybeinganeffectivepredator.

Anherbaceousplantwithbroadleavesandslenderstemsgrowsinthehalflightoftherainforestfloor.Itisdifficulttounderstandhowitcanliveinsuchdimlight.However,asyouwatch,asmallshaftofintensesunlightpiercesanunseenholeintherainforestcanopyandshinesononeoftheplant’sleaves.Thephotosyntheticmachineryoftheplanttakesadvantageofthesituation,andforafewminutestheplantusestheenergyofthetinysunfleck.Nearbyisthebuttressedtrunkofagigantictreethathasgrowntallenoughtoemergefromtheforestcanopyandcountitselfamongtherainforestgiants,seeminglyamomsecurepositionthanthatoftheunderstoryherb.However,asmallvinehasbeguntogrowupthesideofthetree.Itwillgrowquicklyupward,windingitswaytowardthesunandexploitingthewoodysupportofthetree.Soonthevinewilloverwhelmandkillthetree,whichwillbereducedtoatrellisforthevine.

Whetheroncoralreef,rainforest,orabandonedurbanlot,organismsengageinanactivesearchforenergyandnutrients.Formustorganisms,lifeboilsdowntoconvertingenergyandnutrientsintodescendants.Theenergyusedbydifferentorganismscomesintheformoflight,organicmolecules,orinorganicmolecules.Nutrientsaretherawmaterialsanorganismmustacquirefromtheenvironmenttolive.Becauseorganismsacquireenergyandnutrientsindiverseways,weneedtoorganizeourdiscussionundertheumbrellaofmajorconcepts.Inchapter6,wefocusonthree.

CONCEPTS

●Organismsuseoneofthreemainsourcesofenergy:

light,organicmolecules,orinorganicmolecules.

●Therateatwhichorganismscantakeinenergyislimited.

●Optimalforagingtheoryattemptstomodelhoworganismsfeedasanoptimizingprocess.

CASEHISTORIES:

energysources

Organismsuseoneofthreemainsourcesofenergy:

light,organicmolecules,orinorganicmolecules.

     Howdowegrouporganisms?

Wegenerallygrouporganismsonthebasisofsharedevolutionaryhistories,creatingtaxasuchasvertebrateanimals,insects,coniferoustrees,andorchids.However,wecanalsoclassifyorganismsbyhowtheyobtainenergy--thatis,bytheirtrophic(feeding)biology.Organismsthatuseinorganicsourcesofbothcarbonandenergyarecalledautotrophs("self-feeders")andareoftwotypes,photosyntheticandchemosynthetic.Photosyntheicautotrophsusecarbondioxide(CO2)asasourceofcarbonandlightasasourceofenergy.Thisgroupincludestheplants,photosyntheticprotists,andphotosyntheticbacteria.Chemosyntheticautotrophsuseinorganicmoleculesasasourceofcarbonandenergy.Thesearemadeupofahighlydiversegroupofchemosyntheticbacteria.Heterotmphs("other-feeders")areorganismsthatuseorganicmoleculesbothasasourceofcarbonandasasourceofenergy.Theheterotrophsincludebacteria,fungi,protists,animals,andparasiticplants.

Bacteriashowmoretrophicdiversitythantheotherbiologicalkingdoms(fig.6.2).Theprotistsareeitherphotosyntheticorbeterotrophic,mostplantsarephotosynthetic,andallfungiandanimalsareheterotrophic.Incontrast,thebacteriaincludephotosynthetic,chemosynthetic,andheterotrophicspecies,makingthem,asagroup,themosttrophicallydiverseorganismsinthebiosphere.

FIGURE6.2Trophicdiversityacrossthebiologicalkingdoms.

 

UsingLightandCO2

    Becausephotosyntheticorganismsuselightasasourceofenergy,weneedtolearnaboutlight.WealsoneedtounderstandhowphotosyntheticorganismsuseCO2.Thesearetopicsweinvestigatenext.

 

TheSolar-PoweredBiosphere

    Aswesawinchapters2and3,solarenergypowersthewindsandoceancurrents,andannualvariationinsunlightintensitydrivestheseasons.Inchapter4,wealsodiscussedhoworganismsusesunlighttoregulatebodytemperature.Here,buildingonthosediscussions,welookatlightasasourceofenergyforphotosynthesis.

Lightpropagatesthroughspaceasawave,withallthepropertiesofwavessuchasfrequencyandwavelength.Whenlightinteractswithmatter,however,itactsnotasawavebutasaparticle.Particlesoflight,calledphotons,bearafinitequantityofenergy.Longerwavelengths,suchasinfraredlight,carrylessenergythanshorterwavelengths,suchasvisibleandultravioletlight.

Infraredlight,aswesawinchapter4(seefig.4.13),isveryimportantfortemperatureregulationbyorganisms.Thisisbecausethemaineffectofinfraredlightonmatteristoincreasethemotionofwholemolecules,whichwemeasureasincreasedtemperature.However,infraredlightdoesnotcarryenoughenergytodrivephotosynthesis.Attheotherendofthesolarspectrum,ultravioletlightcarriessomuchenergythatitbreaksthecovalentbondsofmanyorganicmolecules.Becauseitcanbreakdownorganicmolecules,ultravioletlightcandestroythecomplexbiochemicalmachineryofphotosynthesis.Betweentheseextremesisthelightwecansee,so-calledvisiblelight,whichisalsocalledphotosyntheticallyactiveradiation,orPAR.PAR,withwavelengthsbetweenabout400and700nm,carriessufficientenergytodrivethelight-dependentreactionsofphotosynthesisbutnotsomuchastodestroyorganicmolecules.PARmakesupabout45%ofthetotalenergycontentofthesolarspectrumatsealevel,whileinfraredlightaccountsforabout53%andultravioletlightfortheremainder.

 

MeasuringPAR

    EcologistsquantifyPARasphotonfluxdensity.Photontluxdensityisthenumberofphotonsstrikingasquaremetersurfaceeachsecond.Thenumberofphotonsisexpressedasmicromoles(μmol),where1moleisAvagadro'snumberofphotons,6.023×1023.Togiveyouapointofreference,aphotonfluxdensityofabout4.6μmolpersquaremeterpersecondequalsalightintensityofabout1wattpersquaremeterMeasuringlightasphotosyntheticphotonfluxdensitymakessenseecologicallybecausechlorophyllabsorbslightasphotons.

Lightchangesinquantityandqualitywithlatitude,withtheseasons,withtheweather,andwiththetimeofday.Inaddition,landscapes,water,andevenorganismsthemselveschangetheamountandqualityoflight.Forexample,inaquaticenvironments(seechapter3),onlythesuperficialeuphoriczonereceivessufficientlighttosupportphotosyntheticorganisms.Inaddition,lightchangesinquality,aswellasquantity,withintheeuphoticzone,whichrangesindepthfromafewmeterstoabout100m(seefig.3.7).

Asinthesea,sunlightchangesasitshinesthroughthecanopyofaforest.Amaturetemperateortropicalforestcanreducethetotalquantityoflightreachingtheforestfloortoabout1%to2%oftheamountshiningontheforestcanopy(fig.6.3).However,forestsalsochangethequalityofsunlight.Withintherangeofphotosyntheticallyactiveradiation,leavesabsorbmainlyblueandredlightandtransmitmostlygreenlightwithawavelengthofabout550nm.Asinthedeepsea,theorganismsontheforestfloorliveinakindoftwilight.Onlyhere,thetwilightisgreen(seefig.2.9).

FIGURE6.3Photosyntheticallyactiveradiation(PAR)inaborealforest(datafromLarcher1995.afterKairiukstis1967).

 

AlternativePhotosyntheticPathways

    Duringphotosynthesis,thephotosyntheticpigmentsofplants,algae,orbacteriaabsorblightandtransfertheirenergytoelectrons.Subsequently,theenergycarriedbytheseelectronsisusedtosynthesizeATPandNADPH.Thesemolecules,inturn,serveasdonorsofelectronsandenergyforthesynthesisofsugars.Inthisway,photosyntheticorganismsconverttheelectromagneticenergyofsunlightintoenergy-richorganicmolecules,thefuelthatfeedsmostofthebiosphere.Withinphotosyntheticorganisms,specificbiochemicalpathwayscarryoutthisenergyconversion;threedifferentbiochemicalpathwaysareknown:

C3photosynthesis,C4photosynthesis,andCAMphotosynthesis.Thesearefoundinecologicallydifferentorganisms.

Biologistsoftenspeakofphotosynthesisas"carbonfixation,''whichreferstothereactionsinwhichCO2becomesincorporatedintoacarbon-containingacid.Inthephotosyntheticpathwayusedbymostplantsandallalgae,theCO2firstcombineswithafive-carboncompoundcalledribulosebisphosphate,orRuBP.Theproductofthisinitialreaction,whichiscatalyzedbytheenzymeRuBPcarboxylase,isphosphoglycericacid,orPGA,athree-carbonacid.Therefore,thisphotosyntheticpathwayisusuallycalledC3photosynthesisandtheplantsthatemployitarecalledC3plants(fig.6.4).

FIGURE6.4C3photosynthesis.

Tofixcarbon,plantsmustopentheirstomatatoletCO2intotheirleaves,butasCO2enters,waterexits.WatervaporflowsoutfasterthanCO2flowsin.ThemovementofwaterismorerapidbecausethegradientinwaterconcentrationfromtheleaftotheatmosphereismuchsteeperthanthegradientinCO2concentrationfromtheatmospheretotheleaf.InCO3plants,thereisanotherfactorthatcontributestoalowrateof

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 笔试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1