GRE Math Review 1 Arithmetic.docx

上传人:b****5 文档编号:5652357 上传时间:2022-12-30 格式:DOCX 页数:34 大小:265.18KB
下载 相关 举报
GRE Math Review 1 Arithmetic.docx_第1页
第1页 / 共34页
GRE Math Review 1 Arithmetic.docx_第2页
第2页 / 共34页
GRE Math Review 1 Arithmetic.docx_第3页
第3页 / 共34页
GRE Math Review 1 Arithmetic.docx_第4页
第4页 / 共34页
GRE Math Review 1 Arithmetic.docx_第5页
第5页 / 共34页
点击查看更多>>
下载资源
资源描述

GRE Math Review 1 Arithmetic.docx

《GRE Math Review 1 Arithmetic.docx》由会员分享,可在线阅读,更多相关《GRE Math Review 1 Arithmetic.docx(34页珍藏版)》请在冰豆网上搜索。

GRE Math Review 1 Arithmetic.docx

GREMathReview1Arithmetic

GRADUATERECORDEXAMINATIONS®

 

MathReview

Chapter1:

Arithmetic

 

Copyright©2010byEducationalTestingService.Allrightsreserved.ETS,theETSlogo,GRADUATERECORDEXAMINATIONS,andGREareregisteredtrademarksofEducationalTestingService(ETS)intheUnitedStatesandothercountries.

TheGRE®MathReviewconsistsof4chapters:

Arithmetic,Algebra,Geometry,andDataAnalysis.Thisistheaccessibleelectronicformat(Word)editionoftheArithmeticChapteroftheMathReview.Downloadableversionsoflargeprint(PDF)andaccessibleelectronicformat(Word)ofeachofthe4chaptersoftheMathReview,aswellasaLargePrintFiguresupplementforeachchapterareavailablefromtheGRE®website.Otherdownloadablepracticeandtestfamiliarizationmaterialsinlargeprintandaccessibleelectronicformatsarealsoavailable.Tactilefiguresupplementsforthe4chaptersoftheMathReview,alongwithadditionalaccessiblepracticeandtestfamiliarizationmaterialsinotherformats,areavailablefromE T SDisabilityServicesMondaytoFriday8:

30amto5pmNewYorktime,at16 0 9-7 7 17 7 8 0,or18 6 6-3 8 78 6 0 2(tollfreefortesttakersintheUnitedStates,U STerritories,andCanada),orviaemailatstassd@ets.org.

ThemathematicalcontentcoveredinthiseditionoftheMathReviewisthesameasthecontentcoveredinthestandardeditionoftheMathReview.However,therearedifferencesinthepresentationofsomeofthematerial.Thesedifferencesaretheresultofadaptationsmadeforpresentationofthematerialinaccessibleformats.Therearealsoslightdifferencesbetweenthevariousaccessibleformats,alsoasaresultofspecificadaptationsmadeforeachformat.

Informationforscreenreaderusers:

Thisdocumenthasbeencreatedtobeaccessibletoindividualswhousescreenreaders.Youmaywishtoconsultthemanualorhelpsystemforyourscreenreadertolearnhowbesttotakeadvantageofthefeaturesimplementedinthisdocument.Pleaseconsulttheseparatedocument,GREScreenReaderInstructions.doc,forimportantdetails.

Figures

TheMathReviewincludesfigures.Inaccessibleelectronicformat(Word)editions,figuresappearonscreen.Followingeachfigureonscreenistextdescribingthatfigure.Readersusingvisualpresentationsofthefiguresmaychoosetoskippartsofthetextdescribingthefigurethatbeginwith“Beginskippablepartofdescriptionof…”andendwith“Endskippablepartoffiguredescription”.

MathematicalEquationsandExpressions

TheMathReviewincludesmathematicalequationsandexpressions.Inaccessibleelectronicformat(Word)editionssomeofthemathematicalequationsandexpressionsarepresentedasgraphics.Incaseswhereamathematicalequationorexpressionispresentedasagraphic,averbalpresentationisalsogivenandtheverbalpresentationcomesdirectlyafterthegraphicpresentation.Theverbalpresentationisingreenfonttoassistreadersintellingthetwopresentationmodesapart.Readersusingaudioalonecansafelyignorethegraphicalpresentations,andreadersusingvisualpresentationsmayignoretheverbalpresentations.

TableofContents

OverviewoftheMathReview5

OverviewofthisChapter5

1.1Integers6

1.2Fractions11

1.3ExponentsandRoots16

1.4Decimals20

1.5RealNumbers24

1.6Ratio30

1.7Percent31

ArithmeticExercises39

AnswerstoArithmeticExercises44

OverviewoftheMathReview

TheMathReviewconsistsof4chapters:

Arithmetic,Algebra,Geometry,andDataAnalysis.

Eachofthe4chaptersintheMathReviewwillfamiliarizeyouwiththemathematicalskillsandconceptsthatareimportanttounderstandinordertosolveproblemsandreasonquantitativelyontheQuantitativeReasoningmeasureoftheGRE®revisedGeneralTest.

ThematerialintheMathReviewincludesmanydefinitions,properties,andexamples,aswellasasetofexerciseswithanswersattheendofeachchapter.Note,however,thatthisreviewisnotintendedtobeallinclusive.Theremaybesomeconceptsonthetestthatarenotexplicitlypresentedinthisreview.Ifanytopicsinthisreviewseemespeciallyunfamiliarorarecoveredtoobriefly,weencourageyoutoconsultappropriatemathematicstextsforamoredetailedtreatment.

OverviewofthisChapter

ThisistheArithmeticChapteroftheMathReview.

Thereviewofarithmeticbeginswithintegers,fractions,anddecimalsandprogressestorealnumbers.Thebasicarithmeticoperationsofaddition,subtraction,multiplication,anddivisionarediscussed,alongwithexponentsandroots.Thechapterendswiththeconceptsofratioandpercent.

1.1Integers

Theintegersarethenumbers1,2,3,andsoon,togetherwiththeirnegatives,

negative1,negative2,negative3,dotdotdot,and0.

Thus,thesetofintegersis

dotdotdot,negative3,negative2,negative1,0,1,2,3,dotdotdot.

Thepositiveintegersaregreaterthan0,thenegativeintegersarelessthan0,and0isneitherpositivenornegative.Whenintegersareadded,subtracted,ormultiplied,theresultisalwaysaninteger;divisionofintegersisaddressedbelow.Themanyelementarynumberfactsfortheseoperations,suchas

7 + 8 = 15,

78minus87=negative9,

7minusnegative18=25,and

7times8=56,

shouldbefamiliartoyou;theyarenotreviewedhere.Herearethreegeneralfactsregardingmultiplicationofintegers.

Fact1:

Theproductoftwopositiveintegersisapositiveinteger.

Fact2:

Theproductoftwonegativeintegersisapositiveinteger.

Fact3:

Theproductofapositiveintegerandanegativeintegerisanegativeinteger.

Whenintegersaremultiplied,eachofthemultipliedintegersiscalledafactorordivisoroftheresultingproduct.Forexample,

2times3times10=60,

so2,3,and10arefactorsof60.Theintegers4,15,5,and12arealsofactorsof60,since

4times15equals60and5times12=60.

Thepositivefactorsof60are1,2,3,4,5,6,10,12,15,20,30,and60.Thenegativesoftheseintegersarealsofactorsof60,since,forexample,

negative2timesnegative30=60.

Therearenootherfactorsof60.Wesaythat60isamultipleofeachofitsfactorsandthat60isdivisiblebyeachofitsdivisors.Herearefivemoreexamplesoffactorsandmultiples.

ExampleA:

Thepositivefactorsof100are1,2,4,5,10,20,25,50,and100.

ExampleB:

25isamultipleofonlysixintegers:

1,5,25,andtheirnegatives.

ExampleC:

Thelistofpositivemultiplesof25hasnoend:

0,25,50,75,100,125,150,etc.;likewise,everynonzerointegerhasinfinitelymanymultiples.

ExampleD:

1isafactorofeveryinteger;1isnotamultipleofanyintegerexcept

1andnegative1.

ExampleE:

0isamultipleofeveryinteger;0isnotafactorofanyintegerexcept0.

Theleastcommonmultipleoftwononzerointegersaandbistheleastpositiveintegerthatisamultipleofbothaandb.Forexample,theleastcommonmultipleof30and75is150.Thisisbecausethepositivemultiplesof30are30,60,90,120,150,180,210,240,270,300,etc.,andthepositivemultiplesof75are75,150,225,300,375,450,etc.Thus,thecommonpositivemultiplesof30and75are150,300,450,etc.,andtheleastoftheseis150.

Thegreatestcommondivisor(orgreatestcommonfactor)oftwononzerointegersaandbisthegreatestpositiveintegerthatisadivisorofbothaandb.Forexample,thegreatestcommondivisorof30and75is15.Thisisbecausethepositivedivisorsof30are1,2,3,5,6,10,15,and30,andthepositivedivisorsof75are1,3,5,15,25,and75.Thus,thecommonpositivedivisorsof30and75are1,3,5,and15,andthegreatestoftheseis15.

Whenanintegeraisdividedbyanintegerb,wherebisadivisorofa,theresultisalwaysadivisorofa.Forexample,when60isdividedby6(oneofitsdivisors),theresultis10,whichisanotherdivisorof60.Ifbisnotadivisorofa,thentheresultcanbeviewedinthreedifferentways.Theresultcanbeviewedasafractionorasadecimal,bothofwhicharediscussedlater,ortheresultcanbeviewedasaquotientwitharemainder,wherebothareintegers.Eachviewisuseful,dependingonthecontext.Fractionsanddecimalsareusefulwhentheresultmustbeviewedasasinglenumber,whilequotientswithremaindersareusefulfordescribingtheresultintermsofintegersonly.

Regardingquotientswithremainders,considertwopositiveintegersaandbforwhichbisnotadivisorofa;forexample,theintegers19and7.When19isdividedby7,theresultisgreaterthan2,since

2times7islessthan19,butlessthan3,since

19islessthan3times7.Because19is5morethan

2times7,wesaythattheresultof19dividedby7isthequotient2withremainder5,orsimply2remainder5.Ingeneral,whenapositiveintegeraisdividedbyapositiveintegerb,youfirstfindthegreatestmultipleofbthatislessthanorequaltoa.Thatmultipleofbcanbeexpressedastheproductqb,whereqisthequotient.Thentheremainderisequaltoaminusthatmultipleofb,or

r = aminusqb,whereristheremainder.Theremainderisalwaysgreaterthanorequalto0andlessthanb.

Herearethreeexamplesthatillustrateafewdifferentcasesofdivisionresultinginaquotientandremainder.

ExampleA:

100dividedby45is2remainder10,sincethegreatestmultipleof45that’slessthanorequalto100is

2times45,or90,whichis10lessthan100.

ExampleB:

24dividedby4is6remainder0,sincethegreatestmultipleof4that’slessthanorequalto24is24itself,whichis0lessthan24.Ingeneral,theremainderis0ifandonlyifaisdivisiblebyb.

ExampleC:

6dividedby24is0remainder6

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 判决书

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1