勾股定理的发现.docx

上传人:b****5 文档编号:5611107 上传时间:2022-12-29 格式:DOCX 页数:14 大小:57.82KB
下载 相关 举报
勾股定理的发现.docx_第1页
第1页 / 共14页
勾股定理的发现.docx_第2页
第2页 / 共14页
勾股定理的发现.docx_第3页
第3页 / 共14页
勾股定理的发现.docx_第4页
第4页 / 共14页
勾股定理的发现.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

勾股定理的发现.docx

《勾股定理的发现.docx》由会员分享,可在线阅读,更多相关《勾股定理的发现.docx(14页珍藏版)》请在冰豆网上搜索。

勾股定理的发现.docx

勾股定理的发现

勾股定理

目录[隐藏]

勾股定理

最早的勾股定理

《周髀算经》简介

伽菲尔德证明勾股定理的故事

勾股定理部分习题

勾股定理的别名

证明

1.利用相似三角形的证法

勾股定理

最早的勾股定理

《周髀算经》简介

伽菲尔德证明勾股定理的故事

勾股定理部分习题

勾股定理的别名

证明

1.利用相似三角形的证法

  

勾股定理

[编辑本段]

勾股定理

  勾股定理:

  在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定

古埃及人利用打结作RT三角形

理,又称毕达哥拉斯定理或毕氏定理(PythagorasTheorem)。

  定理:

  如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。

  如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:

一条直角边是3,一条直角边是四,斜边就是3*3+4*4=X*X,X=5。

那么这个三角形是直角三角形。

(称勾股定理的逆定理)

  来源:

  

毕达哥拉斯树

是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。

据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。

在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。

法国和比利时称为驴桥定理,埃及称为埃及三角形。

我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。

  有关勾股定理书籍

  《数学原理》人民教育出版社

  《探究勾股定理》同济大学出版社

  《优因培教数学》北京大学出版社

  《勾股模型》新世纪出版社

  《九章算术一书》

  《优因培揭秘勾股定理》江西教育出版社

[编辑本段]

最早的勾股定理

  从很多泥板记载表明,巴比伦人是世界上最早发现“勾股定理”的,这里只举一例。

例如公元前1700年的一块泥板(编号为BM85196)上第九题,大意为“有一根长为5米的木梁(AB)竖直靠在墙上,上端(A)下滑一米至D。

问下端(C)离墙根(B)多远?

”他们解此题就是用了勾股定理,如图

  

  设AB=CD=l=5米,BC=a,AD=h=1米,则BD=l-h=5-1米=4米

  ∴a=√[l-(l-h)]=√[5-(5-1)]=3米,∴三角形BDC正是以3、4、5为边的勾股形。

[编辑本段]

《周髀算经》简介

  

青朱出入图

  《周髀算经》算经十书之一。

约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。

唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。

《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。

原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。

《周髀算经》使用了相当繁复的分数算法和开平方法。

对于勾股定理,记曰:

“数之法,出于圆方,方出于矩,距出于九九八十一,故折矩,以为勾广三,股修四,径隅五.”

  三角形为直角三角形,以勾a为边的正方形为朱方,以股b为边的正方形为青方。

以盈补虚,将朱方、青放并成玹方。

依其面积关系有a^+b^=c^.由于朱方、青方各有一部分在玄方内,那一部分就不动了。

  以勾为边的的正方形为朱方,以股为边的正方形为青方。

以赢补虚,只要把图中朱方(a2)的I移至I′,青方的II移至II′,III移至III′,则刚好拼好一个以弦为边长的正方形(c2).由此便可证得a2+b2=c2

[编辑本段]

伽菲尔德证明勾股定理的故事

  1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。

他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。

由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。

只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。

于是伽菲尔德便问他们在干什么?

那个小男孩头也不抬地说:

“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?

”伽菲尔德答道:

“是5呀。

”小男孩又问道:

“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?

”伽菲尔德不加思索地回答到:

“那斜边的平方一定等于5的平方加上7的平方.”小男孩说:

“先生,你能说出其中的道理吗?

”伽菲尔德一时语塞,无法解释了,心里很不是滋味。

,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。

他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。

  如下:

  解:

在网格内,以两个直角边为边长的小正方形面积和,等于以斜边为边长的的正方形面积。

  勾股定理的内容:

直角三角形两直角边a、b的平方和等于斜边c的平方,

  a^2;+b^2;=c^2;

  说明:

我国古代学者把直角三角形的较短直角边称为“勾”,较长直角边为“股”,斜边称为“弦”,所以把这个定理成为“勾股定理”。

勾股定理揭示了直角三角形边之间的关系。

  举例:

如直角三角形的两个直角边分别为3、4,则斜边c^2=a^2+b^2=9+16=25即c=5

  则说明斜边为5。

  勾股定理的种证明方法(部分)

  【证法1】(梅文鼎证明)

  做四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过C作AC的延长线交DF于点P.

  ∵D、E、F在一条直线上,且RtΔGEF≌RtΔEBD,

  ∴∠EGF=∠BED,

  ∵∠EGF+∠GEF=90°,

  ∴∠BED+∠GEF=90°,

  ∴∠BEG=180º―90º=90º.

  又∵AB=BE=EG=GA=c,

  ∴ABEG是一个边长为c的正方形.

  ∴∠ABC+∠CBE=90º.

  ∵RtΔABC≌RtΔEBD,

  ∴∠ABC=∠EBD.

  ∴∠EBD+∠CBE=90º.

  即∠CBD=90º.

  又∵∠BDE=90º,∠BCP=90º,

  BC=BD=a.

  ∴BDPC是一个边长为a的正方形.

  同理,HPFG是一个边长为b的正方形.

  设多边形GHCBE的面积为S,则

  ,

  ∴.

  【证法6】(项明达证明)

  做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.

  过点Q作QP∥BC,交AC于点P.

  过点B作BM⊥PQ,垂足为M;再过点

  F作FN⊥PQ,垂足为N.

  ∵∠BCA=90º,QP∥BC,

  ∴∠MPC=90º,

  ∵BM⊥PQ,

  ∴∠BMP=90º,

  ∴BCPM是一个矩形,即∠MBC=90º.

  ∵∠QBM+∠MBA=∠QBA=90º,

  ∠ABC+∠MBA=∠MBC=90º,

  ∴∠QBM=∠ABC,

  又∵∠BMP=90º,∠BCA=90º,BQ=BA=c,

  ∴RtΔBMQ≌RtΔBCA.

  同理可证RtΔQNF≌RtΔAEF.

  从而将问题转化为【证法4】(梅文鼎证明).

  【证法7】(赵浩杰证明)

  做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形.

  分别以CF,AE为边长做正方形FCJI和AEIG,

  ∵EF=DF-DE=b-a,EI=b,

  ∴FI=a,

  ∴G,I,J在同一直线上,

  ∵CJ=CF=a,CB=CD=c,

  ∠CJB=∠CFD=90º,

  ∴RtΔCJB≌RtΔCFD,

  同理,RtΔABG≌RtΔADE,

  ∴RtΔCJB≌RtΔCFD≌RtΔABG≌RtΔADE

  ∴∠ABG=∠BCJ,

  ∵∠BCJ+∠CBJ=90º,

  ∴∠ABG+∠CBJ=90º,

  ∵∠ABC=90º,

  ∴G,B,I,J在同一直线上,

  从而将问题转化为【证法4】(梅文鼎证明).

  【证法8】(欧几里得证明)

  做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结

  BF、CD.过C作CL⊥DE,

  交AB于点M,交DE于点

  L.

  ∵AF=AC,AB=AD,

  ∠FAB=∠GAD,

  ∴ΔFAB≌ΔGAD,

  ∵ΔFAB的面积等于,

  ΔGAD的面积等于矩形ADLM

  的面积的一半,

  ∴矩形ADLM的面积=.

  同理可证,矩形MLEB的面积=.

  ∵正方形ADEB的面积

  =矩形ADLM的面积+矩形MLEB的面积

  ∴,即.

[编辑本段]

勾股定理部分习题

  第一章勾股定理一、勾股定理的内容,勾股定理是怎样得到的,从定理的证明过程中你得到了什么启示?

  练习:

  1、在△ABC中,∠C=90°.

(1)若a=2,b=3则以c为边的正方形面积是多少?

(2)若a=5,c=13.则b是多少?

.(3)若c=61,b=11.则a是多少?

(4)若a∶c=3∶5且c=20则b是多少?

(5)若∠A=60°且AC=7cm则AB=_cm,BC=_cm.

  2、直角三角形一条直角边与斜边分别为8cm和10cm.则斜边上的高等于_cm.

  3、等腰三角形的周长是20cm,底边上的高是6cm,则底边的长为_cm.

  4、△ABC中,AB=AC,∠BAC=120°,AB=12cm,则BC边上的高AD=_cm.

  5、已知:

△ABC中,∠ACB=90°,CD⊥AB于D,BC=,DB=2cm,则BC=_cm,AB=_cm,AC=_cm.

  6、如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为_______。

  7、在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处。

另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高________米。

  8、已知一个Rt△的两边长分别为3和4,则第三边长的平方是( )

  A、25B、14C、7D、7或25

  9、小丰妈妈买了一部29英寸(74cm)电视机,下列对29英寸的说法中正确的是

  A.小丰认为指的是屏幕的长度;B.小丰的妈妈认为指的是屏幕的宽度;

  C.小丰的爸爸认为指的是屏幕的周长;D.售货员认为指的是屏幕对角线的长度

  二、你有几种证明一个三角形是直角三角形的方法?

  练习:

  (×经典练习×)

  据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连结得一个直角三角形,如果勾是三,股是四,那么弦就等于五,后人概括为“勾三,股四,弦五”。

  

(1)观察:

3、4、5、,5、12、13、,7、24、25,……发现这几组勾股数的勾都是奇数,且从3起就没有间断过。

计算0.5(9+1)与0.5(25-1)、0.5(25+1),并根据你发现的规律,分别写出能表示7、24、25这一组数的股与弦的算式。

  

(2)根据

(1)的规律,若用n(n为奇数且n≥3)来表示所有这些勾股数的勾,请你直接用含n的代数式来表示它们的股和弦。

  答案:

  

(1)0.5(9+1)∧2+0.5(25-1)∧2=169=0.5(25+1)∧20.5(13+1)∧2+0.5(49-1)∧2=0.5(49+1)∧2

  

(2)股:

0.5(n^2-1)弦:

0.5(n^2+1)

  三角形的三边长为(a+b)2=c2+2ab,则这个三角形是()

  A.等边三角形;B.钝角三角形;C.直角三角形;D.锐角三角形.

  1、在ΔABC中,若AB2+BC2=AC2,则∠A+∠C=°。

  2、如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是()

  (A)直角三角形(B)锐角三角形

  (C)钝角三角形(D)以上答案都不对

  已知三角形的三边长分别是2n+1,2n+2n,2n+2n+1(n为正整数)则最大角等于_________度.

  三角形三个内角度数比为1:

2:

3,它的最大边为M,那么它的最小边是_____.

  斜边上的高为M的等腰直角三角形的面积等于_____.

  3、已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四边形ABCD的面积。

  

美国总统的证明方法图

各具特色的证明方法三角学里有一个很重要的定理,我国称它为勾股定理,又叫商高定理。

因为《周髀算经》提到,商高说过"勾三股四弦五"的话。

下面介绍其中的几种证明。

  最初的证明是分割型的。

设a、b为直角三角形的直角边,c为斜边。

考虑下图两个边长都是a+b的正方形A、B。

将A分成六部分,将B分成五部分。

由于八个小直角三角形是全等的,故从等量中减去等量,便可推出:

斜边上的正方形等于两个直角边上的正方形之和。

这里B中的四边形是边长为c的正方形是因为,直角三角形三个内角和等于两个直角。

如上证明方法称为相减全等证法。

B图就是我国《周髀算经》中的“弦图”。

  下图是H.珀里加尔(Perigal)在1873年给出的证明,它是一种相加全等证法。

其实这种证明是重新发现的,因为这种划分方法,labitibnQorra(826~901)已经知道。

(如:

右图)下面的一种证法,是H•E•杜登尼(Dudeney)在1917年给出的。

用的也是一种相加全等的证法。

  如右图所示,边长为b的正方形的面积加上边长为a的正方形的面积,等于边长为c的正方形面积。

  下图的证明方法,据说是L•达•芬奇(daVinci,1452~1519)设计的,用的是相减全等的证明法。

  欧几里得(Euclid)在他的《原本》第一卷的命题47中,给出了勾股定理的一个极其巧妙的证明,如次页上图。

由于图形很美,有人称其为“修士的头巾”,也有人称其为“新娘的轿椅”,实在是有趣。

华罗庚教授曾建议将此图发往宇宙,和“外星人”去交流。

其证明的梗概是:

  (AC)2=2△JAB=2△CAD=ADKL。

  同理,(BC)2=KEBL

  所以

  (AC)2+(BC)2=ADKL+KEBL=(BC)2

  印度数学家兼天文学家婆什迦罗(Bhaskara,活跃于1150年前后)对勾股定理给出一种奇妙的证明,也是一种分割型的证明。

如下图所示,把斜边上的正方形划分为五部分。

其中四部分都是与给定的直角三角形全等的三角形;一部分为两直角边之差为边长的小正方形。

很容易把这五部分重新拼凑在一起,得到两个直角边上的正方形之和。

事实上,

  婆什迦罗还给出了下图的一种证法。

画出直角三角形斜边上的高,得两对相似三角形,从而有

  c/b=b/m,

  c/a=a/n,

  cm=b2

  cn=a2

  两边相加得

  a2+b2=c(m+n)=c2

  这个证明,在十七世纪又由英国数学家J.沃利斯(Wallis,1616~1703)重新发现。

  有几位美国总统与数学有着微妙联系。

G•华盛顿曾经是一个著名的测量员。

T•杰弗逊曾大力促进美国高等数学教育。

A.林肯是通过研究欧几里得的《原本》来学习逻辑的。

更有创造性的是第十七任总统J.A.加菲尔德(Garfield,1831~1888),他在学生时代对初等数学就具有强烈的兴趣和高超的才能。

在1876年,(当时他是众议院议员,五年后当选为美国总统)给出了勾股定理一个漂亮的证明,曾发表于《新英格兰教育杂志》。

证明的思路是,利用梯形和直角三角形面积公式。

如次页图所示,是由三个直角三角形拼成的直角梯形。

用不同公式,求相同的面积得

  即

  a2+2ab+b2=2ab+c2

  a2+b2=c2

  这种证法,在中学生学习几何时往往感兴趣。

  关于这个定理,有许多巧妙的证法(据说有近400种),下面向同学们介绍几种,它们都是用拼图的方法来证明的。

  证法1如图26-2,在直角三角形ABC的外侧作正方形ABDE,ACFG,BCHK,它们的面积分别为c2,b2和a2。

我们只要证明大正方形面积等于两个小正方形面积之和即可。

  过C引CM‖BD,交AB于L,连接BC,CE。

因为

  AB=AE,AC=AG∠CAE=∠BAG,

  所以△ACE≌△AGB

  SAEML=SACFG

(1)

  同法可证

  SBLMD=SBKHC

(2)

  

(1)+

(2)得

  SABDE=SACFG+SBKHC,

  即c2=a2+b2

  证法2如图26-3(赵君卿图),用八个直角三角形ABC拼成一个大的正方形CFGH,它的边长是a+b,在它的内部有一个内接正方形ABED,它的边长为c,由图可知。

  SCFGH=SABED+4×SABC,

  所以a2+b2=c2

  证法3如图26-4(梅文鼎图)。

  在直角△ABC的斜边AB上向外作正方形ABDE,在直角边AC上又作正方形ACGF。

可以证明(从略),延长GF必过E;延长CG到K,使GK=BC=a,连结KD,作DH⊥CF于H,则DHCK是边长为a的正方形。

  五边形ACKDE的面积=S

  一方面,

  S=正方形ABDE面积+2倍△ABC面积

  =c2+ab

(1)

  另一方面,

  S=正方形ACGF面积+正方形DHGK面积

  +2倍△ABC面积

  =b2+a2+ab.

(2)

  由

(1),

(2)得

  c2=a2+b2

  证法4如图26-5(项名达图),在直角三角形ABC的斜边上作正方形ABDE,又以直角三角形ABC的两个直角边CA,CB为基础完成一个边长为b的正方形BFGJ(图26-5)。

可以证明(从略),GF的延长线必过D。

延长AG到K,使GK=a,又作EH⊥GF于H,则EKGH必为边长等于a的正方形。

  设五边形EKJBD的面积为S。

一方面

  S=SABDE+2SABC=c2+ab

(1)

  另一方面,

  S=SBEFG+2•S△ABC+SGHFK

  =b2+ab+a2

  由

(1),

(2)

  得出论证

  都是用面积来进行验证:

一个大的面积等于几个小面积的和。

利用同一个面积的不同表示法来得到等式,从而化简得到勾股定理)图见

  勾股定理是数学上证明方法最多的定理之一——有四百多种证法!

但有记载的第一个证明——毕达哥拉斯的证明方法已经失传。

目前所能见到的最早的一种证法,属于古希腊数学家欧几里得。

他的证法采用演绎推理的形式,记载在数学巨著《几何原本》里。

在中国古代的数学家中,最早对勾股定理进行证明的是三国时期吴国的数学家赵爽。

赵爽创制了一幅“勾股圆方图”,用数形结合的方法,给出了勾股定理的详细证明。

在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。

每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a)2。

于是便可得如下的式子:

4×(ab/2)+(b-a)2=c2化简后便可得:

a2+b2=c2亦即:

c=(a2+b2)(1/2)赵爽的这个证明可谓别具匠心,极富创新意识。

他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。

以下网址为赵爽的“勾股圆方图”:

以后的数学家大多继承了这一风格并且有发展,只是具体图形的分合移补略有不同而已。

例如稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题。

以下网址为刘徽的“青朱出入图”:

  勾股定理应用非常广泛。

我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:

“禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。

”这段话的意思是说:

大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。

  勾股定理在我们生活中有很大范围的运用.。

  勾股定理的16种验证方法(带图):

http:

  练习题:

一个等腰三角形,三个内角的比为1:

1:

10,腰长为10cm。

则这个三角形的面积为____

  解:

由题意得此三角形各角角度为15度15的150度

  设底边上的高为h底边长为2t。

  易得sin15=sin60cos45-cos60sin45=h/10

  解得h=5(√6-√2)/2

  又tan15=(tan60-tan45)/(1-tan60tan45)=5(√6-√2)/2t

  解得t=5(√6+√2)

  故面积s=th=50

[编辑本段]

勾股定理的别名

  勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。

正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。

  我国是发现和研究勾股定理最古老的国家。

我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。

在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“勾广三,股修四,经隅五”,其意为,在直角三角形中“勾三,股四,弦五”.因此,勾股定理在我国又称“商高定理”.在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试认证 > 司法考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1