火箭中压力传感器作用全接触.docx

上传人:b****6 文档编号:5605676 上传时间:2022-12-28 格式:DOCX 页数:13 大小:28.73KB
下载 相关 举报
火箭中压力传感器作用全接触.docx_第1页
第1页 / 共13页
火箭中压力传感器作用全接触.docx_第2页
第2页 / 共13页
火箭中压力传感器作用全接触.docx_第3页
第3页 / 共13页
火箭中压力传感器作用全接触.docx_第4页
第4页 / 共13页
火箭中压力传感器作用全接触.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

火箭中压力传感器作用全接触.docx

《火箭中压力传感器作用全接触.docx》由会员分享,可在线阅读,更多相关《火箭中压力传感器作用全接触.docx(13页珍藏版)》请在冰豆网上搜索。

火箭中压力传感器作用全接触.docx

火箭中压力传感器作用全接触

火箭中压力传感器作用全接触

火箭中压力传感器作用全接触

2011年03月12日

  火箭中压力传感器作用全接触

  为满足载人飞行的以下4项要求,采取了11项改进措施。

  4项要求是:

  1)适应人的生理特点;

  2)提高可靠性,保障飞行绝对安全;

  3)发生灾难性故障时宇航员能及时脱险;

  4)改善火箭性能,提高任务成功率。

  1l项改进措施是;

  1)增设故障探测系统;

  2)改用冗余制导和控制系统;

  3)改用冗余电源系统;

  4)一子级改用冗余液压系统;

  5)用“水星”计划的无线电制导系统代替原“大力神2”的惯性制导系统;

  6)改进推进系统;

  7)改进发射场飞行中止系统;

  8)改进测量系统;

  9)二子级氧化剂箱前增设一用于对接飞船的前裙段;

  10)改进二子级仪器架;

  11)取消反推火箭和游动发动机。

  “大力神2LV—4”从卡纳维拉尔角10号工位发射。

1964年4月8日首次飞行,截止1966年11月共进行12次飞行,成功率100%,1966年底停止使用。

  主要技术性能

  级数2起飞推力1921.7kN

  全长33.22m推重比1.315

  最大直径3.05m运载能力483km轨道3.62t

  起飞质量148.31t

  一子级

  级长21.64m地面推力1912.7kN

  直径3.05m地面比冲2893N·s/kg

  发动机2XLR—87-AJ-7真空比冲2932.2N·s八g

  推进剂四氧化二氮/混肼50_T_作时间~150s

  二子级

  级长5.79m真空推力444.8kN

  直径3.05m真空比冲3069.5N·s/kg

  发动机1XLR—9l—AJ-7_T_.作时间~180s

  推进剂四氧化二氮/混肼50

  总体布局

  “大力神2LV—4”火箭由一、二子级箭体、级间段、动力装置和仪器舱组成。

子级级间和箭体/飞船间装有分离装置。

火箭制导、控制系统安装在二子级箱间段的仪器舱内。

箭体外部设有电缆通道和自生增压系统管路。

贮箱前部有人孔盖。

仪器舱、尾段和箱间段设有检修窗口。

  箭体结构

  火箭箭体采用由隔框加强的硬壳式结构和常规的蒙皮—桁条—隔框半硬壳式结构。

蒙皮材料为2014铝合金,隔框、桁条和大梁采用7075铝合金。

  一子级结构

  一子级长21.64m(包括级间段)由燃料箱、氧化剂箱、箱间段组成。

  燃料箱燃料箱由后裙段、箱体、前裙段和装在贮箱锥形后底上的发动机架组成。

  后裙段为铆接—螺接桁条—隔框结构。

4根大梁从后端框伸向贮箱蒙皮壁板。

裙段的4块内表面铣切蒙皮壁板在大梁处拼接。

裙段内侧装有环形框、前部为“T”形框、中部为“I”形框,后部为锻造铝合金框。

后端框与大梁底端用螺栓连接并与裙段蒙皮铆接。

发动机连接孔位于端框大梁连接部位。

  箱体筒段由8块机加工蒙皮组成。

其中4块为大梁壁板,另4块为有“T”形内桁条的机加工壁板。

10个由板材压制成形的铝合金“Z”形框等距地连接在桁条和大梁壁板上。

  箱体锥形后底由5个构件焊接而成。

锥形底上部由4块外表面经过化铣的板材组成,中央部分为一压延成形的倒置截锥体。

后底上安装两根燃料输出管路。

管路出口处装有十字形导流器,防止燃料产生漩流或涡流。

后底上端由“K”形框与箱壁和后裙段相接。

  燃料箱前底为全焊接椭球底,开有人孔和氧化剂输送管路通孔。

箱底由5块压延成形的瓜瓣形板材组成。

中央顶盖上有一安装导管的锥形连接件。

箱底通过“Y”形框焊接到贮箱筒段上。

  燃料箱内通有一直径25cm的氧化剂输送管路。

输送管后端被焊接在贮箱底端的一个Y形管件上,两个17.8cm直径的支管被螺接在安装泵前阀门的法兰盘上。

氧化剂输送管的前端与氧化剂箱后底连接。

  燃料箱前裙段为一机械加工蒙皮铆接构件,裙段后端焊接在燃料箱“Y”形框上,前端与氧化剂箱螺接。

裙段顶部开有排气孔。

裙段由前后两部分组成。

后段由3块机械加工壁板组成。

壁板内侧装有短桁条,用以加强箱底和“Y”形框连接处的蒙皮。

  贮箱外部设有电缆/增压管路的隧道管。

  氧化剂箱氧化剂箱由箱体及其前后裙段组成。

箱体前底和筒段结构与燃料箱相似,但后底呈椭球形。

  贮箱筒段由4块厚度逐渐变薄的机加工壁板焊接而成。

每块壁板上有9条“T”形内桁条。

桁条间的蒙皮进行机加工,以削薄板材厚度,减轻结构质量。

12个“z”形隔框沿箱壁等距地搭接在桁条上。

  贮箱后底除了氧化剂出口中央蒙皮外均与燃料箱前底相似。

中央蒙皮压延成漏斗状,与通入燃料箱的氧化剂管路相对接,氧化剂箱前底开有人孔,其它与后底相似。

前底通过“Y”形框与贮箱筒段焊接。

  贮箱后裙段为桁条、隔框、蒙皮结构。

蒙皮由3块从内部衔接的板材组成。

裙段有36根锻造“I”形桁条。

氧化剂箱后裙段通过对接框与燃料箱前裙段螺接。

裙段“Y”形框开有3个排气孑L。

  贮箱前裙段除了在14处开有排放二子级发动机燃气流的排焰孔外,其它均与后裙段相似。

裙段蒙皮由锻造的“I”形桁条加强。

裙段端框有4个用以与级间段对齐并螺接的导向销。

  裙段内表面和氧化剂箱顶部以及所有暴露于二子级发动机燃气流的表面均涂有MMS—K421烧蚀材料。

  氧化剂箱外部也铺有电缆/增压管路隧道管。

  级间段级间段长2.44m,底部开有热分离时排放二子级发动机燃气的排焰孔。

排焰孔分布于4个区域。

每区占7根桁条、两个环形框的位置,共两排开口,上排4个、下排6个。

排焰区的桁条、环形框和开口间的蒙皮均涂有MMS-K421烧蚀材料。

级间段前部的12根桁条上装有气体作动分离螺母紧固件。

前端框伸出22个导向销,它们插入二子级后端框导向孔中,用以定位对接。

  二子级结构

  二子级长5.79m,箭体由燃料箱、氧化剂箱和仪器舱组成。

  燃料箱燃料箱由箱体和前后裙段组成。

箱体为全焊接结构,由机加工筒段、可直接安装发动机的后底、前底和氧化剂管路组成。

  筒段由L68em厚板材机加工而成的壁板组成。

壁板内表面有8.9emX8.9em的机加工方形网格。

后底结构与一子级氧化剂箱相似,但开有偏心的氧化剂管出口。

后底焊有一用来安装发动机的,由桁条加强的截锥形构件。

构件上开有推进剂输送管路和液面传感器的开口。

截锥形构件顶端的桁条上焊有安装发动机架的锻造机加工承力框。

  前底结构与一子级前底结构相似。

前底中央开有直径为15.2~m的氧化剂输送管通过口。

箱底还设有安装增压管路、排气管路和测量仪器的接管嘴。

  后裙用“I”形桁条和环形框加强。

桁条顶端装有气体作动分离螺母紧固件。

裙段后端设有与级间段对接的导向销孔。

  前裙与一子级氧化剂箱后裙相似。

裙段由桁条和环形框加强。

裙段前端有一与氧化剂箱后裙段对接的受拉对接框。

  贮箱和裙段外设有电缆和增压管路隧道管。

  氧化剂箱氧化剂箱箱体筒段由4块机加工壁板组成。

内壁有同燃料箱一样的方形网格。

前、后底类似一子级氧化剂箱,前底有一15.2em直径的出口,后底用“Y”形框焊接到箱壁上。

  后裙类似二子级燃料箱,长约1.4m,由框和桁条加强。

  直径为3.05m的前裙是为与“双子星座”飞船对接而新设计的。

裙段骨架由36条“I”形桁条和3个框组成。

与框平行的部位上还装有加强蒙皮的环形构件。

裙段前端框设有用于对接的导向销,桁条和端框上设有螺接孔。

  仪器舱

  仪器舱

  位于二子级箱间段,其轻型仪器架是专为“双子星座”任务新设计的。

舱内装有电池、故障诊断系统组件、靶场安全指令控制系统、程序装置、三轴基准系统、无线电制导系统、自动驾驶仪及测量、遥测系统。

  推进系统

  一子级推进系统

  一子级推进系统由子级发动机和推进剂输送和增压系统组成。

  发动机

  火箭一子级采用LR—87-AJ—7型发动机,由二套同时工作的独立系统组成。

各系统分别由推力室、涡轮泵、燃气发生器、发动机起动系统、推进剂输送管路和控制电路组成。

  LR—87-AJ—7型发动机高3.13m、宽2.72m,质量约1600kg,采用四氧化二氮/混肼50作为推进剂,推进剂混合比1.93,产生地面推力1912.7kN,地面比冲2893N·s/kg,‘工作约150s。

  发动机的燃料再生冷却推力室用多根不锈钢管沿纵向焊接而成。

2个燃气发生器共用一套点火系统同时工作。

  倒数计时:

7=0时,两个固体火药起动器由28V直流电源起动,点燃后产生燃气。

燃气通过涡轮喷嘴驱动涡轮。

涡轮借助齿轮箱带动燃料泵和氧化剂泵转动,将推进剂压送至推力室主阀门。

待燃料出口管路压力达预定值时,由压力作动阀门打开推进剂主阀门。

燃料经推力室冷却通道通过喷注器进入燃烧室与直接进入燃烧室的氧化剂接触自燃点火,燃气从喷管排出产生推力。

燃气发生器输送管路上装有文氏管,以稳定发动机推力,并在推进剂输送管路上设平衡孔以控制推进剂混合比。

燃气发生器燃烧由燃烧室阀门引出的推进剂,由文氏管控制其流量。

由推进剂压力打开管路的单向阀门,富燃料的推进剂进入燃气发生器并自燃点火。

燃气进入涡轮使涡轮持续工作。

正常情况下,发动机采用推进剂耗尽关机,当燃烧室压力传感器敏感压力下降时发出发动机关机指令。

  两个推力室可在俯仰和偏航方向摆动,并提供滚动控制。

  增压系统

  火箭一子级采用自生增压系统,由第二套发动机系统提供能源。

燃料箱用经冷却的燃气发生器燃气增压,氧化剂箱则通过气化部分氧化剂进行增压。

系统组成如下图所示。

  二子级推进系统

  发动机

  二子级采用单推力室LR—91—AJ—7型发动机。

它实际是由按比例缩小的LR—87-AJ—7发动机的一套系统,因而在很多方面与LR—87-AJ—7发动机相似。

  LR—91—AJ—7发动机高2.796m、宽1.74m、质量约460kg,亦采用四氧化二氮/混肼50作为推进剂,推进剂混合比1.8,真空推力444.8kN,真空比冲3069.5N.s/kg,工作约180s。

  与一子级发动机相仿,燃烧室为不锈钢管束式结构。

不同于前者的是只有燃烧室(包括面积比13c1以上部分喷管)是再生冷却式的。

面积比13:

1到49.2c1的喷管延伸段是烧蚀冷却式的,该段由玻璃纤维外壳、玻璃纤维蜂窝芯和石棉内层组成。

发动机起动方式与一子级相

  同。

与一子级发动机一样,也在燃气发生器输送管路上装有稳定推力的文氏管,在推进剂输送管路上设有控制混合比的平衡孔。

  发动机推力室可在俯仰和偏航方向摆动。

滚动控制则由用涡轮废气作工质的旋转滚动控制喷管完成。

  增压系统

  二子级燃料箱增压方法与一子级相同,但氧化剂箱不增压。

系统组成如下图所示。

  为载人飞行所作的改进

  “双子星座”运载火箭的推进系统基本同“大力神2”。

专为载人飞行所作的改进有:

  1)增设POGO抑制器:

在推进剂输送管路中增设POGO(纵向藕合振动)抑制器,将“大力神2”首次飞行发现的土2.5g振动过载降到“双子星座”任务要求的土0.25g。

土2.5g级的振动过载对洲际导弹是可接受的,但对宇航员却会降低完成飞行任务的能力。

抑制器由设于氧化剂输送管路竖管中衰减振动压力的调压器和置于燃料管路中的弹簧加载蓄压器组成。

  2)改进二子级发动机喷注器:

为增强发动机燃烧动态稳定性,改进了二子级发动机的喷注器。

喷注器喷孔加大,孔数减少一半,隔板从“大力神2”的6块增为?

块并去掉中央叶毂。

去掉叶毂能降低隔板与喷注器表面连接点的热应力,并能减少焊点、简化工艺。

  3)增设故障监测系统:

一、二子级都增设了监视发动机性能的监测系统。

系统由安装在三个推力室上的压力开关组成。

发动机系统的压力是发动机性能的直接函数,当发动机性能异常压力随之下降时,开关接通飞船指示灯电路,报警灯亮。

系统是双冗余的,每一推力室设2个压力开关。

当系统压力低于70%额定值时,2个开关都接通,表示故障确实发生。

  4)增设射前故障监测系统:

该系统由安装在贮箱增压管路上的压力开关组成。

发动机起动瞬间开关启动表示贮箱增压满足要求,如果一子级贮箱增压压力低于最低要求值则发动机会在发射台上自动关机。

  5)增设二子级冗余关机系统:

该系统用来在主关机系统失效时确保发动机在火箭达到入轨速度时准时关机,以免将飞船送入一错误的轨道。

系统由一安装在燃气发生器的氧化剂管路上的电爆阀门组成。

该系统能在发出推力室阀门关闭信号的同时切断通往燃气发生器的氧化剂液流,发动机随即熄火。

  6)其它更改为:

测量系统从40mY系统转为5mV系统,以提供更好的数据和易于判读;一子级发动机架重新设计,以适应新的串联作动器;一子级发动机系统中认为有可能引起火灾的部件均进行防火绝缘。

  制导与控制系统

  虽然“双子星座”运载火箭的制导和控制系统是在“大力神2”组件的基础上研制的,但二者的差别甚大。

“双子星座”运载火箭采用了全系统冗余的制导与控制系统。

  美国国家航空航天局曾通过“水星”宇航员进行过模拟研究。

模拟结果表明,除了发动机失控外,宇航员均可在发生故障时进行手动中止飞行。

故障预警时间试验结果表明,一级飞行中发动机滚动失控后1s便超过宇航员的生理极限。

要在一秒钟的时间内进行故障监测、显示、观察判断、起动逃逸装置是绝对来不及的。

发生急速发展的故障(如发动机失控)时逃逸救生时间的不足,是采用可自动切换(仅需15ms)的全冗余制导控制系统的主要原因。

  系统在“大力神2”基础上的改进点有:

  1)系统采用冗余技术,由主、副两套系统组成(见图);

  2)主系统中用无线电制导系统和三轴基准系统代替原“大力神2”的惯性制导系统;

  3)为使三轴基准系统的输出信号能与“大力神2”自动驾驶仪兼容,增加一适配器;

  4)副系统用飞船的惯性制导系统作备用制导系统;

  5)一子级采用两套液压系统和两套系统共用的串联作动器;

  6)为完成主、副系统的切换,增加了功率放大器和切换继电器;“双子星座”运载火箭制导控制系统的特点是;1)可在一级飞行出现任何单一故障时完成任务,并提供二级飞行的部分冗余;2)可在一、二级动力飞行段进行自动或手动切换;3)尽可能利用经过“大力神1”和“大力神2”飞行考验的部件;4)主系统和副系统之间进行完全的电气和物理隔离;5)简单的切换电路设计,使切换失败或意外切换的可能性降至最低程度。

  主制导、控制系统

  主制导、控制系统由无线电制导系统、三轴基准系统、适配器、一子级速率陀螺和自动驾驶仪组成。

一级飞行时,主系统由三轴基准系统、适配器、自动驾驶仪和速率陀螺组成。

二级飞行时引入无线电制导系统,由它对三轴基准系统提供俯仰和偏航制导信号,使飞船精确入轨。

  三轴基准系统

  三轴基准系统安装在位于二子级箱间段的仪器舱内。

它用陀螺仪提供滚动、偏航和俯仰轴的角位移信息。

在三轴基准系统装置中含一程序装置,在一级飞行中起定时器的作用。

由它按预定的飞行轨道改变火箭俯仰和滚动轴的角基准,因而也改变火箭沿此二个轴的飞行方向。

在一级飞行中由三轴基准系统提供制导功能,由它通过适配器、自动驾驶仪向液压系统等其它组件发出信号指令。

  根据任务需要(如执行交会、对接任务时)滚动程序可在倒数计时时不断更改;但俯仰程序是根据每个特定任务预先装订的,在倒数计时时不能更改。

  二级飞行时,三轴基准系统从无线电制导系统接受控制信号和俯仰和偏航轴的角基准变化信息,并向控制系统其它系统发送信号、执行指令。

此外三轴基准系统还负责按预定时间发

  出级间分离等时间指令信号。

  适配器组件

  该组件也位于二子级箱间段。

它用来调节由三轴基准系统来的信号,并将其送往自动驾驶仪。

它也在三轴基准系统程序指定时刻,调节由无线电制导系统来的经三轴基准系统制导放大器放大的俯仰和偏航控制信号。

适配器装有(冗余)切换继电器,在主切换继电器发生故障时,由副继电器进行主、副系统的切换。

在火箭进行测试时,飞行控制系统的15个陀螺均通过适配器放大的信号进行监控。

  一子级速率陀螺

  速率陀螺位于级间段,它是“大力神2”控制系统的组件,由3个陀螺测量一级飞行时的俯仰?

滚动和偏航角速率分量。

速率陀螺的输出信号送往自动驾驶仪。

  自动驾驶仪自动驾驶仪位于二子级箱间段,它是洲际导弹“大力神”自动驾驶仪的改型。

自动驾驶仪由二级飞行用的三个轴向陀螺,一个为一、二子级速率陀螺提供磁放大和电源的800Hz静态转换器,以及用于接收从一、二子级速率陀螺来的信号,放大、分配、调节从适配器来的姿态基准信号并将其送往液压系统的电路等组成。

  无线电制导系统

  该系统用来在二级飞行时向三轴基准系统提供俯仰和偏航制导信号。

  如下图所示,系统由箭上和地面二部分组成。

箭上系统由速率信标脉冲信标和译码机组成;地面系统由速率系统、位置测量系统和“宝来A—广型计算机组成。

通用电器公司ModⅡ系统产生速率和位置数据,并将其送往“宝来”计算机。

计算机按预先设定的制导方程,计算俯仰和偏航控制命令,并送往火箭,使火箭在达到要求的入轨速度时处于正确的高度和姿态。

此时,计算机产生一时间指令信号,指令发动机关机。

  “双子星座”计划所采用的无线电制导系统是“水星”制导系统的改型,二者基本相同。

为“双子星座”计划所作的改进主要集中在“宝来”计算机系统。

该系统增加一用以与发射设施、飞船惯性制导系统、NASA任务中心、载人飞船中心进行实时通信提供缓冲能力的数据交换器。

  该计算机的特殊功能有:

  1)自动接收和鉴定来自任务控制中心的目标飞行器位置推算数据;

  2)完成目标计算,并将其送往惯性制导系统作上升段制导(备用模式);

  3)计算所要求的发射方位,并向发射控制室和惯性制导系统发送滚动程序;

  4)向任务控制中心传送用于缓慢发展型故障监控的制导参数;

  5)一级飞行时计算修正指令,并送往惯性制导系统以补偿方位校准误差。

  副制导、控制系统

  副制导、控制系统由飞船惯性制导系统、一子级速率陀螺(主系统的冗余件)和自动驾驶仪(主系统的冗余件)组成。

  飞船惯性制导系统按程序在切换到副系统时,为副系统自动驾驶仪提供姿态稳定信号。

“双子星座”飞船惯性制导系统如下图所示。

  主、副系统的切换

  有手动和自动两种切换方式。

  一级飞行时,在发生以下任一情况时进行主、副系统的切换;1)发动机失控(自动切换);2)

  “双子星座”飞船惯性制导系统超过俯仰、偏航、滚动速率极限(自动切换);3)一子级主液压系统压力丧失(自动切换);4)宇航员判断,手动切换。

  一级飞行时切换是一次性的,即一旦切换发生便不能由副系统返回主系统,只有待一子级分离后才能由宇航员手动切换回主系统。

  二级飞行时的动压要小的多,故切换只在以下二种情况下进行;1)超过俯仰、偏航、滚动速率极限(自动切换);2)宇航员判断,手动切换。

  接到切换信号的惯性制导系统进行信号衰减,将信号减为零,然后再按一指数规律注入信号。

这样能将切换时运载火箭的载荷降至最低。

  液压系统

  火箭液压系统按飞行控制系统的指令信号控制一、二子级发动机推力室的位置,改变推力方向,调整俯仰或偏航轴,使火箭沿预定的轨道飞行。

  一子级液压系统

  火箭一子级采用冗余液压系统,由通过串联作动器互联的两套独立的动力装置组成。

除了为提供冗余而设的串联作动器外,其它组件与“大力神2”相同。

系统为一子级两台发动机推力矢量控制提供20.68MPa压力。

  一子级主液压系统

  该系统由高压涡轮驱动泵、电动马达、高压电动马达驱动泵、高压管路和歧管、过滤器、调节装置、4个与副液压系统共用的串联作动器、测量设备和连接器组成。

液压工质为MIL—H6083油。

  一子级涡轮驱动泵是一种流量可调、压力补偿液压系统。

它在一子级发动机工作时提供液流和液压。

驱动泵有9个活塞。

活塞由发动机涡轮泵装置花键轴带动的盘板驱动。

由活塞的滑动套提供压力补偿,按要求提高或降低系统压力。

涡轮泵流量0.057m’/min、压力20.68MPa、转速3760r/min。

  系统的调节装置为蓄压器/油箱组件。

功能有:

1)使系统保持常压;2)作为液压系统油箱;3)敏感液压系统的压力和液面变化。

装置为串联作动器提供压力。

该装置容积为1560em’、气体体积410cm’、高压20.68MPa、低压0.76MPa。

  10L1m级过滤器为可置换组件,装有压差指示器,当二端压差超过0.4MPa时有红色显示。

  四个由主、副系统共用的作动器为串联组件。

每个作动器由二个完整的电动—液压伺服系统部分组成。

一个伺服部分与主系统相接,另一个与副系统相接。

两个伺服部分是相互独立的,但由一专用的切换阀连接,任何时刻只允许其中一个部分参与工作。

作动器行程土2.78cm,可使发动机在俯仰方向摆动土4.38‘、偏航方向摆动土4.12’。

作动器压差为20.68MPa时的输出·力为131.85kN,最大作动速度为13.74*/s。

  电动马达驱动泵只在地面测试时使用。

  一子级副液压系统

  副液压系统只参与副控制系统的工作,但在整个飞行中,即使未被起用也始终处于加压状态。

  副系统由主系统一样的组件组成。

电动马达驱动泵是主、副两系统共用的,在测试时用系统试验选择阀切换。

作动器切换阀设计成能够敏感主系统的压力,并在主系统发生故障,液压降至规定值以下时,自动起动向副系统的切换。

  主、副系统的切换

  共有以下四种切换方式:

  1)主液压系统压力丧失,由作动器切换阀自动切换;

  2)运载火箭速率超过预定极限值时,由故障监测系统速率开关组件起动切换;

  3)一子级发动机失控时,由串联作动器预置极限开关监测和起动切换;

  4)宇航员根据飞船面板显示和地面监控人员报告的信息判定主系统发生故障时,由宇航员向故障监测系统发出切换信号。

  二子级液压系统

  故障模式研究结果表明二子级无需设冗余系统。

  二子级液压系统除了涡轮驱动泵流量较小(0.019m’/min),作动器换用一般线性作动器和另采用一滚动控制喷管作动器外,其它组件与一子级液压系统相仿。

  二子级主发动机偏航和俯仰伺服作动器行程为土1.24cm,可使发动机相对中线摆动土2.04’。

作动器在压差为20.68MPa时的输出力为34.03kN,其最大驱动速度16.38~/s。

滚动控制伺服作动器行程为土3.56cm,可使喷管摆动土33.83’,压差20.68MPa时的输出力为5.54kN,作动器最大驱动速度为8.75~/s。

  电源系统

  “双子星座”运载火箭采用全系统冗余的电源系统,由电源配电分系统和程序分系统组成’。

系统供28V、25V直流电和400Hz200V交流电。

  电源配电系统

  电源配电系统由辅助电源系统和测量电源系统组成。

二个子系统各由相应的电池和转换开关组成。

电源系统与运载火箭各系统的接口如图所示。

电源系统通过二个接线盒与飞船接通。

系统是全冗余的,电路沿火箭两边走线。

一子级发动机区的电缆用绝缘材料和镀铝玻璃纤维带包扎。

  程序系统

  全冗余程序系统由继电器和马达—驱动开关逻辑线路组成。

系统为火箭各系统提供各种离散信号。

系统框图如下所示。

为保证二子级发动机按指令准确关机,系统增设一备用电源。

  故障监测系统

  故障监测系统是为保证宇航员安全、提高任务成功率而专门设计的一个全新的系统,是火箭在“大

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1