钛合金的制造工艺设计论文.docx

上传人:b****6 文档编号:5601323 上传时间:2022-12-28 格式:DOCX 页数:7 大小:21.02KB
下载 相关 举报
钛合金的制造工艺设计论文.docx_第1页
第1页 / 共7页
钛合金的制造工艺设计论文.docx_第2页
第2页 / 共7页
钛合金的制造工艺设计论文.docx_第3页
第3页 / 共7页
钛合金的制造工艺设计论文.docx_第4页
第4页 / 共7页
钛合金的制造工艺设计论文.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

钛合金的制造工艺设计论文.docx

《钛合金的制造工艺设计论文.docx》由会员分享,可在线阅读,更多相关《钛合金的制造工艺设计论文.docx(7页珍藏版)》请在冰豆网上搜索。

钛合金的制造工艺设计论文.docx

钛合金的制造工艺设计论文

 

XX海洋大学

金属工艺论文

 

钛合金的制造工艺

摘要:

钛是20世纪50年代发展起来的一种结构金属。

钛合金具有强度高,耐腐蚀性好,耐热性高等特点而被广泛应用于各个领域。

世界上许多国家意识到钛合金的重要性,相继对其研发,并应用到实际中去。

介绍了钛合金的发展现状、特性、铸造工艺性能及其热处理,阐述了钛合金的生产技术及其应用,对钛合金

的发展趋势进行了展望。

Abstract:

TitaniumisakindofmetalstructuredevelopedintwentiethCentury50.Titaniumalloyhashighstrength,goodcorrosionresistance,heatresistanceandhighersexualcharacteristicsarewidelyusedinvariousfields.Manycountriesintheworldtorealizetheimportanceoftitaniumalloy,insuccessiontotheR&D,andappliedtopractice.Titaniumalloydevelopmentstatus,characteristics,propertiesandheattreatmentofcastingprocessisintroduced,elaboratedtheproductiontechnologyoftitaniumalloyanditsapplication,developmenttrendoftitaniumalloyisdiscussed.

 

关键词:

钛合金结构材料合金化性能

Keywords:

TitaniumalloyStructuralmaterialsAlloyingPerformance

钛合金是以钛为基加入其他元素组成的合金。

钛有两种同质异晶体:

882℃以下为密排六方结构α钛,882℃以上为体心立方的β钛。

合金元素根据它们对相变温度的影响可分为三类:

①稳定α相、提高相转变温度的元素为α稳定元素,有铝、碳、氧和氮等。

其中铝是钛合金主要合金元素,它对提高合金的常温和高温强度、降低比重、增加弹性模量有明显效果。

②稳定β相、降低相变温度的元素为β稳定元素,又可分同晶型和共析型二种。

应用了钛合金的产品前者有钼、铌、钒等;后者有铬、锰、铜、铁、硅等。

③对相变温度影响不大的元素为中性元素,有锆、锡等。

  氧、氮、碳和氢是钛合金的主要杂质。

氧和氮在α相中有较大的溶解度,对钛合金有显著强化效果,但却使塑性下降。

通常规定钛中氧和氮的含量分别在0.15~0.2%和0.04~0.05%以下。

氢在α相中溶解度很小,钛合金中溶解过多的氢会产生氢化物,使合金变脆。

通常钛合金中氢含量控制在0.015%以下。

氢在钛中的溶解是可逆的,可以用真空退火除去。

  钛合金制品

钛是同素异构体,熔点为1720℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以上呈体心立方品格结构,称为β钛。

利用钛的上述两种结构的不同特点,添加适当的合金元素,使其相变温度及相分含量逐渐改变而得到不同组织的钛合金(titaniumalloys)。

室温下,钛合金有三种基体组织,钛合金也就分为以下三类:

α合金,(α+β)合金和β合金。

中国分别以TA、TC、TB表示。

编辑本段α钛合金

  它是α相固溶体组成的单相合金,不论是在一般温度下还是在较高的实际应用温度下,均是α相,组织稳定,耐磨性高于纯钛,抗氧化能力强。

在500℃~600℃的温度下,仍保持其强度和抗蠕变性能,但不能进行热处理强化,室温强度不高。

 它是双相合金,具有良好的综合性能,组织稳定性好,有良好的韧性、塑性和高温变形性能,能较好地进行热压力加工,能进行淬火、时效使合金强钛合金制武器化。

热处理后的强度约比退火状态提高50%~100%;高温强度高,可在400℃~500℃的温度下长期工作,其热稳定性次于α钛合金。

  三种钛合金中最常用的是α钛合金和α+β钛合金;α钛合金的切削加工性最好,α+β钛合金次之,β钛合金最差。

α钛合金代号为TA,β钛合金代号为TB,α+β钛合金代号为TC。

钛合金按用途可分为耐热合金、高强合金、耐蚀合金(钛-钼,钛-钯合金等)、低温合金以及特殊功能合金(钛-铁贮氢材料和钛-镍记忆合金)等。

典型合金的成分和性能见表。

  热处理钛合金通过调整热处理工艺可以获得不同的相组成和组织。

一般认为细小等轴组织具有较好的塑性、热稳定性和疲劳强度;针状组织具有较高的持久强度、蠕变强度和断裂韧性;等轴和针状混合组织具有较好的综合性能。

编辑本段性能

  钛是一种新型金属,钛的性能与所含碳、氮、氢、氧等杂质含量有关,最纯的碘化钛杂质含量不超过0.1%,但其强度低、塑性高。

99.5%工业纯钛的性能为:

密度ρ=4.5g/cm3,熔点为172矽钛合金耐磨地坪

5℃,导热系数λ=15.24W/(m.K),抗拉强度σb=539MPa,伸长率δ=25%,断面收缩率ψ=25%,弹性模量E=1.078×105MPa,硬度HB195。

强度高

  热强度高

  使用温度比铝合金高几XX,在中等温度下仍能保持所要求的强度,可在450~500℃的温度下长期工作这两类钛合金在150℃~500℃X围内仍有很高的比强度,而铝合金在150℃时比强度明显下降。

钛合金的工作温度可达500℃,铝合金则在200℃以下。

抗蚀性好

 钛合金在潮湿的大气和海水介质中工作,其抗蚀性远优于不锈钢;对点蚀、酸蚀、应力腐蚀的抵抗力特别强;对碱、氯化物、氯的有机物品、硝酸、硫酸等有优良的抗腐蚀能力。

但钛对具有还原性氧及铬盐介质的抗蚀性差。

低温性能好

 钛合金在低温和超低温下,仍能保持其力学性能。

低温性能好,间隙元素极低的钛合金,如TA7,在-253℃下还能保持一定的塑性。

因此,钛合金也是一种重要的低温结构材料。

 常用的热处理方法有退火、固溶和时效处理。

退火是为了消除内应力、提高塑性和组织稳定性,以获得较好的综合性能。

通常α合金和(α+β)合金退火温度选在(α+β)─→β相转变点以下120~200℃;固溶和时效处理是从高温区快冷,以得到马氏体α′相和亚稳定的β相,然后在中温区保温使这些亚稳定相分解,得到α相或化合物等细小弥散的第二相质点,达到使合金强化的目的。

通常(α+β)合金的淬火在(α+β)─→β相转变点以下40~100℃进行,亚稳定β合金淬火在(α+β)─→β相转变点以上40~80℃进行。

时效处理温度一般为450~550℃。

  总结,钛合金的热处理工艺可以归纳为:

  

(1)消除应力退火:

目的是为消除或减少加工过程中产生的残余应力。

防止在一些腐蚀环境中的化学侵蚀和减少变形。

  

(2)完全退火:

目的是为了获得好的韧性,改善加工性能,有利于再加工以及提高尺寸和组织的稳定性。

  (3)固溶处理和时效:

目的是为了提高其强度,α钛合金和稳定的β钛合金不能进行强化热处理,在生产中只进行退火。

α+β钛合金和含有少量α相的亚稳β钛合金可以通过固溶处理和时效使合金进一步强化。

  此外,为了满足工件的特殊要求,工业上还采用双重退火、等温退火、β热处理、形变热处理等金属热处理工艺。

  刀具材料[3]

  切削加工钛合金应从降低切削温度和减少粘结两方面出发,选用红硬性好、抗弯强度高、导热性能好、与钛合金亲和性差的刀具材料,YG类硬质合金比较合适。

由于高速钢的耐热性差,因此应尽量采用硬质合金制作的刀具。

常用的硬质合金刀具材料有YG8、YG3、YG6X、YG6A、813、643、YS2T和YD15等。

  涂层刀片和YT类硬质合金会与钛合金产生剧烈的亲和作用,加剧刀具的粘结磨损,不宜用来切削钛合金;对于复杂、多刃刀具,可选用高钒高速钢(如W12Cr4V4Mo)、高钴高速钢(如W2Mo9Cr4VCo8)或铝高速钢(如W6Mo5Cr4V2Al、M10Mo4Cr4V3Al)等刀具材料,适于制作切削钛合金的钻头、铰刀、立铣刀、拉刀、丝锥等刀具。

  采用金刚石和立方氮化硼作刀具切削钛合金,可取得显著效果。

如用天然金刚石刀具在乳化液冷却的条件下,切削速度可达200m/min;若不用切削液,在同等磨损量时,允许的切削速度仅为100m/min。

世界上第一个研制成功的高温钛合金是Ti-6Al-4V,使用温度为300-350℃。

随后相继研制出使用温度达400℃的IMI550、BT3-1等合金,以及使用温度为450~500℃的IMI679、IMI685、Ti-6246、Ti-6242等合金。

目前已成功地应用在军用和民用飞机发动机中的新型高温钛合金有.英国的IMI829、IMI834合金;美国的Ti-1100合金;俄罗斯的BT18Y、BT36合金等。

表7为部分国家新型高温钛合金的最高使用温度近几年国外把采用快速凝固/粉末冶金技术、纤维或颗粒增强复合材料研制钛合金作为高温钛合金的发展方向,使钛合金的使用温度可提高到650℃以上[1,27,29,31]。

美国麦道公司采用快速凝固/粉末冶金技术戚功地研制出一种高纯度、高致密性钛合金,在760℃下其强度相当于目前室温下使用的钛合金强度。

  合金元素根据它们对相变温度的影响可分为三类:

①稳定α相、提高相转变温度的元素为α稳定元素,有铝、碳、氧和氮等。

其中铝是钛合金主要合金元素,它对提高合金的常温和高温强度、降低比重、增加弹性模量有明显效果。

②稳定β相、降低相变温度的元素为β稳定元素,又可分同晶型和共析型二种。

前者有钼、铌、钒等;后者有铬、锰、铜、铁、硅等。

③对相变温度影响不大的元素为中性元素,有锆、锡等。

氧、氮、碳和氢是钛合金的主要杂质。

氧和氮在α相中有较大的溶解度,对钛合金有显著强化效果,但却使塑性下降。

通常规定钛中氧和氮的含量分别在0.15-0.2%和0.04-0.05%以下。

氢在α相中溶解度很小,钛合金中溶解过多的氢会产生氢化物,使合金变脆。

通常钛合金中氢含量控制在0.015%以下。

氢在钛中的溶解是可逆的,可以用真空退火除去。

钛合金-分类

α钛合金

钛合金它是α相固溶体组成的单相合金,不论是在一般温度下还是在较高的实际应用温度下,均是α相,组织稳定,耐磨性高于纯钛,抗氧化能力强。

在500℃~600℃的温度下,仍保持其强度和抗蠕变性能,但不能进行热处理强化,室温强度不高

β钛合金

它是β相固溶体组成的单相合金,未热处理即具有较高的强度,淬火、时效后合金得到进一步强化,室温强度可达1372~1666MPa;但热稳定性较差,不宜在高温下使用。

α+β钛合金

它是双相合金,具有良好的综合性能,组织稳定性好,有良好的韧性、塑性和高温变形性能,能较好地进行热压力加工,能进行淬火、时效使合金强化。

热处理后的强度约比退火状态提高50%~100%;高温强度高,可在400℃~500℃的温度下长期工作,其热稳定性次于α钛合金。

三种钛合金中最常用的是α钛合金和α+β钛合金;α钛合金的切削加工性最好,α+p钛合金次之,β钛合金最差。

α钛合金代号为TA,β钛合金代号为TB,α+β钛合金代号为TC。

钛合金按用途可分为耐热合金、高强合金、耐蚀合金(钛-钼,钛-钯合金等)、低温合金以及特殊功能合金(钛-铁贮氢材料和钛-镍记忆合金)等。

典型合金的成分和性能。

热处理钛合金通过调整热处理工艺可以获得不同的相组成和组织。

一般认为细小等轴组织具有较好的塑性、热稳定性和疲劳强度;针状组织具有较高的持久强度、蠕变强度和断裂韧性;等轴和针状混合组织具有较好的综合性能。

钛合金的性能

(1)比强度高

钛合金的密度一般在4.5g/cm3左右,仅为钢的60%,纯钛的强度接近普通钢的强度,一些高强度钛合金超过了许多合金结构钢的强度。

因此钛合金的比强度(强度/密度)远大于其他金属结构材料,可制出单位强度高、刚性好、质轻的零、部件。

在飞机的发动机构件、骨架、蒙皮、紧固件及起落架等都使用钛合金。

(2)热强度高

使用温度比铝合金高几XX,在中等温度下仍能保持所要求的强度,可在450-500℃的温度下长期工作这两类钛合金在150℃-500℃X围内仍有很高的比强度,而铝合金在150℃时比强度明显下降。

钛合金的工作温度可达500℃,铝合金则在200℃以下。

钛合金(3)抗蚀性好

钛合金在潮湿的大气和海水介质中工作,其抗蚀性远优于不锈钢;对点蚀、酸蚀、应力腐蚀的抵抗力特别强;对碱、氯化物、氯的有机物品、硝酸、硫酸等有优良的抗腐蚀能力。

但钛对具有还原性氧及铬盐介质的抗蚀性差。

(4)低温性能好

钛合金在低温和超低温下,仍能保持其力学性能。

低温性能好,间隙元素极低的钛合金,如TA7,在-253℃下还能保持一定的塑性。

因此,钛合金也是一种重要的低温结构材料。

(5)化学活性大

钛的化学活性大,与大气中O、N、H、CO、CO2、水蒸气、氨气等产生强烈的化学反应。

含碳量大于0.2%时,会在钛合金中形成硬质TiC;温度较高时,与N作用也会形成TiN硬质表层;在600℃以上时,钛吸收氧形成硬度很高的硬化层;氢含量上升,也会形成脆化层。

吸收气体而产生的硬脆表层深度可达0.1-0.15mm,硬化程度为20%~30%。

钛的化学亲和性也大,易与摩擦表面产生粘附现象。

(6)导热系数小、弹性模量小

钛的导热系数λ=15.24W/(m.K)约为镍的1/4,铁的1/5,铝的1/14,而各种钛合金的导热系数比钛的导热系数约下降50%。

钛合金的弹性模量约为钢的1/2,故其刚性差、易变形,不宜制作细长杆和薄壁件,切削时加工表面的回弹量很大,约为不锈钢的2~3倍,造成刀具后刀面的剧烈摩擦、粘附、粘结磨损。

钛合金具有强度高而密度又小,机械性能好,韧性和抗蚀性能很好。

另外,钛合金的工艺性能差,切削加工困难,在热加工中,非常容易吸收氢氧氮碳等杂质。

还有抗磨性差,生产工艺复杂。

钛的工业化生产是1948年开始的。

航空工业发展的需要,使钛工业以平均每年约8%的增长速度发展。

世界钛合金加工材年产量已达4万余吨,钛合金牌号近30种。

使用最广泛的钛合金是Ti-6Al-4V(TC4),Ti-5Al-2.5Sn(TA7)和工业纯钛(TA1、TA2和TA3)。

[1]

钛合金主要用于制作飞机发动机压气机部件,其次为火箭、导弹和高速飞机的结构件。

60年代中期,钛及其合金已在一般工业中应用,用于制作电解工业的电极,发电站的冷凝器,石油精炼和海水淡化的加热器以及环境污染控制装置等。

钛及其合金已成为一种耐蚀结构材料。

此外还用于生产贮氢材料和形状记忆合金等。

中国于1956年开始钛和钛合金研究;60年代中期开始钛材的工业化生产并研制成TB2合金。

钛合金-热处理

钛合金板常用的热处理方法有退火、固溶和时效处理。

退火是为了消除内应力、提高塑性和组织稳定性,以获得较好的综合性能。

通常α合金和(α+β)合金退火温度选在(α+β)─→β相转变点以下120~200℃;固溶和时效处理是从高温区快冷,以得到马氏体α′相和亚稳定的β相,然后在中温区保温使这些亚稳定相分解,得到α相或化合物等细小弥散的第二相质点,达到使合金强化的目的。

通常(α+β)合金的淬火在(α+β)─→β相转变点以下40~100℃进行,亚稳定β合金淬火在(α+β)─→β相转变点以上40~80℃进行。

时效处理温度一般为450~550℃。

钛合金的热处理工艺可以归纳为:

(1)消除应力退火:

目的是为消除或减少加工过程中产生的残余应力。

防止在一些腐蚀环境中的化学侵蚀和减少变形。

(2)完全退火:

目的是为了获得好的韧性,改善加工性能,有利于再加工以及提高尺寸和组织的稳定性。

(3)固溶处理和时效:

目的是为了提高其强度,α钛合金和稳定的β钛合金不能进行强化热处理,在生产中只进行退火。

α+β钛合金和含有少量α相的亚稳β钛合金可以通过固溶处理和时效使合金进一步强化。

此外,为了满足工件的特殊要求,工业上还采用双重退火、等温退火、β热处理、形变热处理等金属热处理工艺。

[2]

钛合金-切削

钛合金切削特点

钛合金的硬度大于HB350时切削加工特别困难,小于HB300时则容易出现粘刀现象,也难于切削。

但钛合金的硬度只是难于切削加工的一个方面,关键在于钛合金本身化学、物理、力学性能间的综合对其切削加工性的影响。

钛合金有如下切削特点:

(1)变形系数小:

这是钛合金切削加工的显著特点,变形系数小于或接近于1。

切屑在前刀面上滑动摩擦的路程大大增大,加速刀具磨损。

(2)切削温度高:

由于钛合金的导热系数很小(只相当于45号钢的1/5~1/7),切屑与前刀面的接触长度极短,切削时产生的热不易传出,集中在切削区和切削刃附近的较小X围内,切削温度很高。

在相同的切削条件下,切削温度可比切削45号钢时高出一倍以上。

(3)单位面积上的切削力大:

主切削力比切钢时约小20%,由于切屑与前刀面的接触长度极短,单位接触面积上的切削力大大增加,容易造成崩刃。

同时,由于钛合金的弹性模量小,加工时在径向力作用下容易产生弯曲变形,引起振动,加大刀具磨损并影响零件的精度。

因此,要求工艺系统应具有较好的刚性。

(4)冷硬现象严重:

由于钛的化学活性大,在高的切削温度下,很容易吸收空气中的氧和氮形成硬而脆的外皮;同时切削过程中的塑性变形也会造成表面硬化。

冷硬现象不仅会降低零件的疲劳强度,而且能加剧刀具磨损,是切削钛合金时的一个很重要特点。

(5)刀具易磨损:

毛坯经过冲压、锻造、热轧等方法加工后,形成硬而脆的不均匀外皮,极易造成崩刃现象,使得切除硬皮成为钛合金加工中最困难的工序。

另外,由于钛合金对刀具材料的化学亲和性强,在切削温度高和单位面积上切削力大的条件下,刀具很容易产生粘结磨损。

车削钛合金时,有时前刀面的磨损甚至比后刀面更为严重;进给量f0.2mm/r时,前刀面将出现磨损;用硬质合金刀具精车和半精车时,后刀面的磨损以VBmax<0.4mm较合适。

刀具材料

切削加工钛合金应从降低切削温度和减少粘结两方面出发,选用红硬性好、抗弯强度高、导热性能好、与钛合金亲和性差的刀具材料,YG类硬质合金比较合适。

由于高速钢的耐热性差,因此应尽量采用硬质合金制作的刀具。

钛合金具有密度低、比强度高、抗腐蚀性能好、工艺性能好等优点,是较为理想的航天工程结构材料。

研究X围:

钛合金可分为结构钛合金和耐热钛合金,或α型钛合金、β型钛合金和α+β型钛合金。

研究X围还包括钛合金的成形技术、粉末冶金技术、快速凝固技术、钛合金的军用和民用等。

这种金属可以说是目前我所了解到硬度最高的,所以它的加工工艺也是非常困难。

参考文献

[1]杨冠军;《钛合金研究和加工技术的新进展》2001年

[2]卫争艳;《钛合金文件综述》;《钛钢科技》2008年第一期

[3]《钛合金加工新技术》;维普咨询网;《工具展望》2010年第4期

[4]X承宗《金属腐蚀与保护》,冶金工艺1985

[5]X喜燕,赵永清《钛合金的应用》化学工业2005年版

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1