药物化学简答题题库.docx

上传人:b****5 文档编号:5571275 上传时间:2022-12-27 格式:DOCX 页数:22 大小:43.27KB
下载 相关 举报
药物化学简答题题库.docx_第1页
第1页 / 共22页
药物化学简答题题库.docx_第2页
第2页 / 共22页
药物化学简答题题库.docx_第3页
第3页 / 共22页
药物化学简答题题库.docx_第4页
第4页 / 共22页
药物化学简答题题库.docx_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

药物化学简答题题库.docx

《药物化学简答题题库.docx》由会员分享,可在线阅读,更多相关《药物化学简答题题库.docx(22页珍藏版)》请在冰豆网上搜索。

药物化学简答题题库.docx

药物化学简答题题库

1].巴比妥类药物的一般合成方法中,用卤烃取代丙二酸二乙酯的氢时,当两个取代基大小不同时,应先引入大基团,还是小基团?

为什么?

当引入的两个烃基不同时,一般先引入较大的烃基到次甲基上。

经分馏纯化后,再引入小基团。

这是因为,当引入一个大基团后,因空间位阻较大,不易再接连上第二个基团,成为反应副产物。

同时当引入一个大基团后,原料、一取代产物和二取代副产物的理化性质差异较大,也便于分离纯化。

2].试说明异戊巴比妥的化学命名。

异戊巴比妥的化学命名采用芳杂环嘧啶作母体。

按照命名规则,应把最能表明结构性质的官能团酮基放在母体上。

为了表示酮基(=O)的结构,在环上碳2,4,6均应有连接两个键的位置,故采用添加氢(AddedHydrogen)的表示方法。

  所谓添加氢,实际上是在原母核上增加一对氢(即减少一个双键),表示方法是在结构特征位置的邻位用带括号的H表示。

本例的结构特征为酮基,因有三个,即表示为2,4,6-(1H,3H,5H)嘧啶三酮。

2,4,6是三个酮基的位置,1,3,5是酮基的邻位。

  该环的编号依杂环的编号,使杂原子最小,则第五位为两个取代基的位置,取代基从小排到大,故命名为5-乙基-5(3-甲基丁基)-2,4,6(1H,3H,5H)嘧啶三酮。

3].巴比妥药物具有哪些共同的化学性质?

1)呈弱酸性,巴比妥类药物因能形成内酰亚氨醇一内酰胺互变异构,故呈弱酸性。

2)水解性,巴比妥类药物因含环酰脲结构,其钠盐水溶液,不够稳定,甚至在吸湿情况下,也能水解。

3)与银盐的反应,这类药物的碳酸钠的碱性溶液中与硝酸银溶液作用,先生成可溶性的一银盐,继而则生成不溶性的二银盐白色沉淀。

4)与铜吡啶试液的反应,这类药物分子中含有-CONHCONHCO-的结构,能与重金属形成不溶性的络合物,可供鉴别。

11)为什么巴比妥C5次甲基上的两个氢原子必须全被取代才有疗效?

其原因是:

一般来说,未解离的巴比妥类药物分子较其离子易于透过细胞膜而发挥作用。

如果巴比妥酸5上引入一个烃基或芳基时,对它的酸性影响不大,如5位上引入两个基团,生成的5.5位双取代物,则酸性大大降低,不易解离,药物分子能透过血屏障,进入中枢神经系统而发挥作用。

巴比妥酸和一取代巴比妥酸几乎全部解离,均无疗效。

故只有当巴比妥酸5位上两个活泼氢都被取代时,才有作用,单一取代无疗效。

1)为什么巴比妥类药物的合成一般是在丙二酸二乙酯的2位引入相应的取代基后再

与脲缩合成环?

这是因为丙二酸二酯2位亚甲基上的氢比较活泼,在醇钠催化下易于和卤烃反

应。

而环合后形成的巴比妥酸,由于4,6-位的羰基与相邻酰亚氮原子上的孤电子

对发生p、π共轭,并存在下列平衡。

巴比妥酸单内酰亚胺双内酰亚胺三内酰亚胺

因而降低2位亚甲基的活泼性。

除少数诸如卤丙烯、3-卤代环己烯等较活泼的卤

烃能与其反应外,一般都很困难,收率极低,无实用价值。

所以巴比妥类药物的合成

一般是在丙二酸二乙酯的2位引入相应的取代基后再与脲缩合成环,而不采用先

合环,再在5位引入取代基的方法。

2)试述巴比妥药物的一般合成方法?

合成巴比妥类药物时,通常是以氯乙酸为原料,在微碱性条件下,与氰化钠反应后,

经碱性加热水解,所得丙二酸钠盐,在硫酸催化下与乙醇直接酯化成丙二酸二乙

酯。

与醇钠作用后,再与相应的卤烃反应,在丙二酸的二位引入烃基;最后在醇钠作

用下与脲缩合,即可制得各种不同的巴比妥类药物。

3)巴比妥类药物的一般合成方法中,为什么氯乙酸不能与氰化钠直接反应?

因为氰化物剧毒,遇到酸性能生成挥发性的氢氰酸,故在氰化前须将氯乙酸中和成

钠盐。

4)巴比妥药物的一般合成方法中,为什么第1步要使用Na2CO3控制pH=7-7.5?

因为氯乙酸在强碱中加热易水解成羟乙酸,所以,弱碱碳酸钠控制pH=7-7.5为

宜。

5)巴比妥类药物的一般合成方法中,当5位的两个取代基R≠R'时,应该先引入哪种

烃基?

当引入的两个烃基不同时,一般先引入较大的烃基到次甲基上。

经分馏后,再引入

小基团。

6)试述苯巴比妥的合成方法。

苯巴比妥的合成方法是以氯苄为起始原料,经氰化、水解及酯化制得苯乙酸乙酯;

在醇钠催化下,再与草酸酯进行Claisen酯缩合后,加热脱羰,制得2-苯基丙二酸

二乙酯;再经烃化引入乙基;最后与脲缩合,即得苯巴比妥。

合成过程为:

7)苯巴比妥的合成与巴比妥药物的一般合成方法略有不同,为什么?

因为卤苯上的卤素不活泼,如果按巴比妥药物的一般合成方法直接用卤代苯和丙

二酸二乙酯反应引入苯基,收率极低,无实用意义。

因此,一般以氰苄为起始原料合

成苯巴比妥。

8)苯巴比妥可能含有哪些杂质?

这些杂质是怎样产生的?

如何检查杂质的限量?

可能含有苯巴比妥酸、2-苯基丁酰胺、2-苯基丁酰脲等杂质。

其中,苯巴比妥酸是

制造过程中反应不完的中间产物。

检查时利用其酸性较强,可使甲基橙变红色而检

出。

2-苯基丁酰胺和2-苯基丁酰脲等为副产物或分解产物。

利用其不溶于氢氧化

钠溶液,而溶于醚的性质,提取称重测定其限量。

5.如何用化学方法区别吗啡和可待因?

利用两者还原性的差的差别可区别。

区别方法是将样品分别溶于稀硫酸,加入碘化钾溶液,由于吗啡的还原性,析出游离碘呈棕色,再加氨水,则颜色转深,几乎呈黑色。

可待因无此反应

6.合成类镇痛药的按结构可以分成几类?

这些药物的化学结构类型不同,但为什么都具有类似吗啡的作用?

合成类镇痛药按结构可分为:

哌啶类、氨基酮类和苯吗喃类。

它们虽然无吗啡的五环的结构,但都具吗啡镇痛药的基本结构,即:

(1)分子中具有一平坦的芳环结构。

(2)有一个碱性中心,能在生理pH条件下大部分电离为阳离子,碱性中心和平坦结构在同一平面。

(3)含有哌啶或类似哌啶的空间结构,而烃基部分在立体构型中,应突出在平面的前方。

故合成类镇痛药能具有类似吗啡的作用。

7.根据吗啡与可待因的结构,解释吗啡可与中性三氯化铁反应,而可待因不反应,以及可待因在浓硫酸存在下加热,又可以与三氯化铁发生显色反应的原因?

从结构可以看出:

吗啡分子中存在酚羟基,而可待因分子中的酚羟基已转化为醚键。

因为酚可与中性三氯化铁反应显蓝紫色,而醚在同样条件下却不反应。

但醚在浓硫酸存在下,加热,醚键可断裂重新生成酚羟基,生成的酚羟基可与三氯化铁反应显蓝紫色。

8.试说明地西泮的化学命名。

含稠环的化合物,在命名时应选具有最多累计双键的环系作母体,再把最能表明结构性质的官能团放在母体上。

地西泮的母体为苯并二氮杂卓,计有5个双键,环上还有一个饱和位置。

应用额外氢(IndicatedHydrogen指示氢)表示饱和位置,以避免出现歧义。

表示的方法为位置上加H,这样来区别可能的异构体。

1H-苯并二氮杂卓2H-苯并二氮杂卓3H-苯并二氮杂卓地西泮

  此外地西泮的母环上只有4个双键,除用额外氢表示的一个外,还有两个饱和位置采用加氢碳原子来表示。

根据命名原则,优先用额外氢表示结构特征的位置,在本例中为2位酮基的位置,其余两个饱和位置1、3位用氢(化)表示。

  故地西泮的命名为1-甲基-5-苯基-7-氯-1,3-二氢-2H-1,4-苯并二氮杂卓-2-酮。

其中杂环上1,4-代表氮原子的位置。

9.试分析酒石酸唑吡坦上市后使用人群迅速增大的原因。

镇静催眠药在上个世纪60年代前,主要使用巴比妥类药物,因其有成瘾性、耐受性和蓄积中毒,在60年代苯并氮卓类药物问世后,使用开始减少。

苯并氮革类药物比巴比妥类的选择性高、安全范围大,对呼吸抑制小,在60年代后逐渐占主导。

唑吡坦的作用类似苯并氮卓,但可选择性的与苯并氮卓ω1型受体结合,具有强镇静作用,没有肌肉松弛和抗惊厥作用,不会引起反跳和戒断综合症,被滥用的可能性比苯并氮卓小,故问世后使用人群迅速增大。

10.请叙述说普罗加比(Pragabide)作为前药的意义。

普罗加比在体内转化成γ一氨基丁酰胺,成GABA(γ一氨基丁酸)受体的激动剂,对癫痫、痉挛状态和运动失调有良好的治疗效果。

由于γ一氨基丁酰胺的极性太大,直接作为药物使用,因不能透过血脑屏障进入中枢,即不能达到作用部位,起到药物的作用。

为此作成希夫碱前药,使极性减小,可以进入血脑屏障。

1.以Propranolol为例,分析芳氧丙醇类b-受体阻滞剂的结构特点及构效关系。

Propranolol是在对异丙肾上腺素的构效关系研究中发现的非选择性β一受体阻滞剂,结构中含有一个氨基丙醇侧链,属于芳氧丙醇胺类化合物,1位是异丙氨基取代、3位是萘氧基取代,C2为手性碳,由此而产生的两个对映体活性不一样,左旋体活性大于右旋体,但药用其外消旋体。

  为了克服Propranolol用于治疗心律失常和高血压时引起的心脏抑制、发生支气管痉挛、延缓低血糖的恢复等副作用,以Propranolol为先导化合物设计并合成了许多类似物,其中大多数为芳氧丙醇胺类化合物,少数为芳基乙醇胺类化合物,这两类药物的结构都是由三个部分组成:

芳环、仲醇胺侧链和N一取代基,并具有相似的构效关系:

1.芳环部分可以是苯、萘、杂环、稠环和脂肪性不饱和杂环,环上可以有甲基、氯、甲氧基、硝基等取代基,2,4-或2,3,6-同时取代时活性最佳。

2.氧原子用S、CH2或NCH3取代,作用降低。

3.C2为S构型,活性强,R构型活性降低或消失。

4.N一取代基部分以叔丁基和异丙基取代活性最高,烷基碳原子数少于3或N,N-双取代活性下降。

2.从盐酸胺碘酮的结构出发,简述其理化性质、代谢特点及临床用途。

盐酸胺碘酮是苯并呋喃类化合物,结构中的各取代基相对较稳定,但由于羰基与取代苯环及苯并呋喃环形成共轭体系,故固态的盐酸胺碘酮仍应避光保存;其盐酸盐与一般的盐不同,在有机溶剂中易溶(如氯仿、乙醇),而在水中几乎不溶,且盐酸盐在有机溶剂中稳定性比在水中好;结构中含碘,加硫酸加热就分解、氧化产生紫色的碘蒸气;结构中含羰基,能与2,4-二硝基苯肼形成黄色的胺碘酮2,4-二硝基苯腙沉淀。

  盐酸胺碘酮口服吸收慢,生物利用度不高,起效极慢,要一周左右才起作用,半衰期长达33~44天,分布广泛,可蓄积在多种组织和器官,代谢也慢,容易引起蓄积中毒。

其主要代谢物N-去乙基衍生物仍有相似的活性。

盐酸胺碘酮虽是钾通道阻滞剂,但对钠、钙通道也有阻滞作用,对α、β受体也有非竞

  争性阻滞作用,为广谱抗心律失常药,长期使用可产生角膜上皮褐色微粒沉积、甲状腺功能紊乱等副作用,临床用于其他药物治疗无效的严重心律失常。

3.写出以愈创木酚为原料合成盐酸维拉帕米的合成路线。

VerapamilHydrochloride的合成是以愈创木酚为原料,经甲基化、氯甲基化、氰化得到3,4-二甲氧基苯乙腈,再与溴代异丙烷进行烃化反应,烃化位置在苄位,得a-异丙基-3,4-二甲氧基苯乙腈,再次用溴氯丙烷进行烷基化反应,然后与3,4-二甲氧基苯乙胺缩合,用甲醛、甲酸甲基化,最后与盐酸生成VerapamilHydrochloride。

4.简述NODonorDrug(供体药物)扩血管的作用机制。

N0DonorDrug的作用机制:

NOdonordrug首先和细胞中的巯基形成不稳定的S-亚硝基硫化合物,进而分解成不稳定的有一定脂溶性的NO分子。

N0激活鸟苷酸环化酶,升高细胞中的环磷酸鸟苷cGCMP的水平,cGMP可激活cGMP依赖型蛋白激酶。

这些激酶活化后,即能改变许多种蛋白的磷酸化状态,包括对心肌凝蛋白轻链(the1ightchainofmyosin)的去磷酸化作用,改变状态后的肌凝蛋白不能在平滑肌收缩过程中起到正常的收缩作用,导致了血管平滑肌的松弛,血管的扩张。

5.Lovartatin为何被称为前药?

说明其代谢物的结构特点。

Lovastatin为羟甲戊二酰辅酶A还原酶抑制剂,在体外无活性,需在体内将结构中内酯环水解为开环的β-羟基酸衍生物才具有活性,故Lovastatin为一前药。

此开环的β-羟基酸的结构正好与羟甲戊二酰辅酶A还原酶的底物羟甲戊二酰辅酶A的戊二酰结构相似,由于酶的识别错误,与其结合而失去催化活性,使内源性胆固醇合成受阻,结果能有效地降低血浆中内源性胆固醇水平,临床可用于治疗原发性高胆固醇血症和冠心病。

Lovastatin的代谢主要发生在内酯环和萘环的3位上,内酯环水解成开环的β-羟基酸衍生物,而萘环3位则可发生羟化或3位甲基氧化、脱氢成亚甲基、羟甲基、羧基等,3-羟基衍生物、3-亚甲基衍生物、3-羟基甲基衍生物的活性均比Lovastatin略低,3-羟基衍生物进一步重排为6-羟基衍生物,则失去了活性。

6.以Captopril(卡托普利)为例,简要说明ACEI类抗高血压药的作用机制及为克服Captopril的缺点,对其进行结构改造的方法。

血管紧张素转化酶抑制剂(ACEI)类抗高血压药主要是通过抑制血管紧张素转化酶(ACE)的活性、,使血管紧张素I(AngI)不能转化为血管紧张素Ⅱ(AngⅡ),导致血浆中AngⅡ数量下降,无法发挥其收缩血管的作用及促进醛固酮分泌作用,ACEI还能抑制缓激肽的降解,上述这些作用结果均使血压下降。

卡托普利(Captopril)是根据ACE的结构设计出来的第一个上市的ACEI,为脯氨酸的衍生物,脯氨酸氮原子上连一个有甲基和巯基取代的丙酰基侧链,使Captopril具有良好的抗高血压作用,但用药后易产生皮疹、干咳、嗜酸性粒细胞增高、味觉丧失和蛋白尿的副作用.,味觉丧失可能与结构中的巯基有关,考虑到脯氨酸的吡咯环及环上的羧基阴离子对结合酶部位起到重要的作用,故在尽可能保留该部分结构特点的同时,用α一羧基苯丙胺代替巯基如依那普利(Enalapril),或用含次膦酸基的苯丁基代替巯基福辛普利(Fosinpril),再将羧基或次膦酸基成酯,则可得到一类长效的ACEI,上述不良反应也减少。

将脯氨酸的吡咯环变成带有L-型氨基酸结构特征的杂环或双环等,再酯化侧链的羧基如雷米普利(Ramipril),也可得到一类长效的ACEI。

7.简述钙通道阻滞剂的概念及其分类

钙通道阻滞剂是一类能在通道水平上选择性地阻滞Ca2+经细胞膜上钙离子通道进入细胞内,减少细胞内Ca2+浓度,使心肌收缩力减弱、心率减慢、血管平滑肌松弛的药物。

根据WTO对钙通道阻滞剂的划分,钙通道阻滞剂可分为两大类:

一、选择性钙通道阻滞剂,包括:

1.苯烷胺类,如Verapamil。

2.二氢吡啶类,如Nifedipine。

3.苯并硫氮卓类,如Diltiazem。

二、非选择性钙通道阻滞剂,包括:

4.氟桂利嗪类,如Cinnarizine。

5.普尼拉明类,如Prenylamine。

1)为什么质子泵抑制剂抑制胃酸分泌的作用强,而且选择性好?

胃酸分泌的过程有三步。

第一步,组胺、乙酰胆碱或胃泌素刺激壁细胞底一边膜上相应的受体,引起第二信使cAMP或钙离子的增加;第二步,经第二信使cAMP或钙离子的介导,刺激由细胞内向细胞顶端传递;第三步,在刺激下细胞内的管状泡与顶端膜内陷形成的分泌性微管融合,原位于管状泡处的胃质子泵—H+/K+—ATP酶移至分泌性胃管,将氢离子从胞浆泵向胃腔,与从胃腔进入胞浆的钾离子交换,氢离子与顶膜转运至胃腔的氯离子形成盐酸(即胃酸的主要成分)分泌。

  质子泵抑制剂是胃酸分泌必经的最后一步,可完全阻断各种刺激引起的胃酸分泌。

且因质子泵抑制剂是以共价键的方式与酶结合,故抑制胃酸分泌的作用很强。

而且质子泵仅存在于胃壁细胞表面,质子泵抑制剂如Omeprazole在口服后,经十二指肠吸收,可选择性地浓缩在胃壁细胞的酸性环境中,在壁细胞中可存留24小时,因而其作用持久。

即使血药浓度水平低到不能被检出,仍能发挥作用。

  故质子泵抑制剂的作用专一,选择性高,副作用较小。

2)请简述止吐药的分类和作用机制。

止吐药物可阻断呕吐神经反射环的传导,达到止吐的临床治疗效果。

该反射环受多种神经递质影响,如组胺、乙酰胆碱、多巴胺和5一羟色胺。

止吐药,现以其作用靶点和作用机制(即拮抗的受体)分为抗组胺受体止吐药、抗乙酰胆碱受体止吐药、抗多巴胺受体止吐药和抗5一HT3受体的5一HT3受体拮抗剂。

3)试从化学结构上分析多潘立酮比甲氧氯普胺较少中枢副作用的原因。

作为促动力药物的多潘立酮和甲氧氯普胺,是希望作用于消化系统的多巴胺D2受体,如促进胃肠道的蠕动等起作用。

但这两个药物都能进入中枢,影响中枢的多巴胺D2受体,导致中枢神经的副作用。

从结构上看多潘立酮比甲氧氯普胺含有较多的极性基团,极性较甲氧氯普胺大,不易透过血脑屏障。

即相比之下,进人中枢的多潘立酮的量较少,故多潘立酮比甲氧氯普胺较少中枢的副作用。

4)以联苯双酯的发现为例,叙述如何从传统药物(中药)中发现新药?

从临床实践中的传统药物中,分离提取有效成分,进行结构鉴定;将这一有效的成分作为药物,或以此为先导物,进行结构修饰或改造,得到可以使用的较优的药物,是用现代药物化学方法研究、开发新药的经典方法,传统药物是现代药物的一个来源。

本例是因为分离得到的活性成分量太少,不足以进行临床研究,转而用有效成分全合成研究中得到的中间体进行研究。

考虑到制备容易,又符合药用的要求,而成功地开发出肝病治疗辅助药物联苯双酯。

1.根据环氧酶的结构特点,如何能更好的设计出理想的非甾体抗炎药物?

依据COX-1和COX-2的结构,选择具有与塞利西布类似的分子结构,即其分子由三部分组成,五元环以及由五元环所连接的两个芳核。

分子中的两个苯核较为重要,特别是在苯核的4位以磺酰胺基或甲磺酰基取代活性最强,若其他取代基时,其活性较低。

在另一个苯核的对位应有取代基如甲基、甲氧基、氯、溴、氟。

但以氟取代物活性最强。

在分子中易变部位为其五元环。

五元环可以为噻吩、噻唑、吡咯、噁唑、咪唑、噁唑酮、环戊烯等,当在五元环上存在与其共平面的取代基时,活性较强,尤其是三氟甲基。

2.为什么将含苯胺类的非那西汀淘汰而保留了对乙酰氨基酚?

为苯胺类药物代谢规律所决定,非那西汀的代谢物具有毒性,不易被排除而产生毒性,对乙酰氨基酚的代谢物较非那西汀易于排出体外。

3.为什么临床上使用的布洛芬为消旋体?

布洛芬S(+)为活性体,但R(-)在体内可代谢转化为S(+)构型,所以布洛芬使用外消旋体

4.从现代科学的角度分析将阿司匹林制成钙盐,是否能降低胃肠道的副作用?

阿司匹林的作用靶点为环氧酶,其钙盐不改变其作用靶点,只能改变其溶解度,副作用产生的本质是抑制胃壁的前列腺素合成。

5.从双氯酚酸钠合成工艺的研究结果分析药物合成工艺的进展应向哪个方向发展?

双氯酚酸钠的合成有多种路线,但本书的方法为最简洁,具有较高的使用价值。

从双氯酚酸钠的合成路线改进看,取得合成工艺的突破在于合成路线的巧妙设计和新试剂、新反应的使用及对反应机制的深刻理解

6.从保泰松的代谢过程的研究中,体验从药物代谢过程发现新药?

在保泰松代谢过程的许多产物具有抗炎活性和抗痛风活性,从药物代谢产物发现新药是新药开发的常见方法。

因此依据药物的代谢规律,观察代谢的生物活性变化,将有苗头的代谢物进行研究,即有可能发现新药

1.为什么环磷酰胺的毒性比其它氮芥类抗肿瘤药物的毒性小?

答:

肿瘤细胞内的磷酰胺酶的活性高于正常细胞,利用前体药物起到靶向作用。

磷酰基吸电子作用,降低N上电子云密度,从而降低烷基化能力。

在肝内活化(不是肿瘤组织)被细胞色素P450酶氧化成4-OH环磷酰胺,最终生成丙稀醛、磷酰氮芥、去甲氮芥,都是较强的烷化剂。

2.抗代谢抗肿瘤药物是如何设计出来的?

试举一例药物说明。

答:

利用生物电子等排原理设计,用具有相似的物理和化学性质,又能产生相似的生物活性的相同价键的基团,取代生物机体的本源代谢物。

  如腺嘌呤和鸟嘌呤是DNA的组成部分,次黄嘌呤是二者生物合成的重要中间体,巯嘌呤就是将次黄嘌呤的羟基改变为巯基得到的衍生物,干扰DNA的正常代谢。

3.为什么氟尿嘧啶是一个有效的抗肿瘤药物?

答:

尿嘧啶掺入肿瘤组织的速度较其他嘧啶快,利用生物电子等排原理,以氟原子取代氢原子合成氟尿嘧啶,因为氟原子的半径和氢原子半径行进,氟化物的体积与原化合物几乎相等,加之C-F键特别稳定,在代谢过程中不易分解,分子水平代替正常代谢物,从而抑制DNA的合成,最后肿瘤死亡。

4.试说明顺铂的注射剂中加入氯化钠的作用。

答:

顺铂水溶液不稳定,能逐渐水解和转化为反式,进一步水解成为无抗肿瘤活性且有剧毒的低聚物,低聚物在0.9%的氯化钠溶液中不稳定,可迅速完全转化为顺铂,因此临床上不会导致中毒危险。

5.氮芥类抗肿瘤药物是如何发展而来的?

其结构是由哪两部分组成的?

并简述各部分的主要作用。

答:

氮芥的发现源于芥子气,第一次世界大战使用芥子气作为毒气,后来发现芥子气对淋巴癌有治疗作用,由于对人的毒性太大,不可能作为药用而在此基础上发展出氮芥类抗肿瘤药

氮芥类化合物分子由两部分组成:

烷基化部分是抗肿瘤的功能基,载体部分的改变可改善药物在体内的药代动力学性质.

1)天然青霉素G有哪些缺点?

试述半合成青霉素的结构改造方法。

天然青霉素G的缺点为对酸不稳定,不能口服,只能注射给药;抗菌谱比较狭窄,仅对革兰阳性菌的效果好;细菌易对其产生耐药性;有严重的过敏性反应。

在青霉素的侧链上引入吸电子基团,阻止侧链羰基电子向β一内酰胺环的转移,增加了对酸的稳定性,得到一系列耐酸青霉素。

在青霉素的侧链上引入较大体积的基团,阻止了化合物与酶活性中心的结合。

又由于空间阻碍限制酰胺侧链R与羧基间的单键旋转,从而降低了青霉素分子与酶活性中心作用的适应性,因此药物对酶的稳定性增加。

在青霉素的侧链上引入亲水性的基团(如氨基,羧基或磺酸基等),扩大了抗菌谱,不仅对革兰阳性菌有效,对多数革兰阴性菌也有效。

2)以反应式表示红霉素对酸的不稳定性,简述半合成红霉素的结构改造方法。

由于红霉素分子中多个羟基及9位上羰基的存在,因此在酸性条件下不稳定,先发生C-9羰基和C-6羟基脱水环合,进一步反应生成红霉胺和克拉定糖而失活。

近年来在研究红霉素半合成衍生物时,均考虑将C-6羟基和C-9羰基进行保护,开发出一系列药物。

(1)将9位的羰基做成甲氧乙氧甲氧肟后,得到罗红霉素;

(2)将C-9上的肟还原后,再和2-(2-甲氧基乙氧基)乙醛进行反应,形成噁嗪环,得到地红霉素;(3)将红霉素肟经贝克曼重排后得到扩环产物,再经还原、N一甲基化等反应,将氮原子引入到大环内酯骨架中制得第一个环内含氮的15元环的阿奇霉素;(4)在9位羰基的a位即8位引入电负性较强的氟原子,即得氟红霉素;(5)将C-6位羟基甲基化,得到克拉霉素。

3)奥格门汀是由哪两种药物组成?

说明两者合用起增效作用的原理。

奥格门汀是由克拉维酸和阿莫西林所组成的复方制剂。

阿莫西林为半合成的广谱青霉素,通过抑制细菌细胞壁的合成而发挥抗菌作用,但会被细菌所产生的β-内酰胺酶水解而失活。

克拉维酸是有效的β-内酰胺酶抑制剂,可与多数β-内酰胺酶牢固结合,可使阿莫西林免受β-内酰胺酶的钝化,用于治疗耐阿莫西林细菌所引起的感染。

4)为什么青霉素G不能口服?

其钠盐或钾盐必须做成粉针剂型?

由于青霉素在酸性条件下不稳定,易发生重排而失活,因此不能口服。

通常将其做成钠盐或钾盐注射使用。

但其钠盐或钾盐水溶液的碱性较强,β-内酰胺环会开环,生成青霉酸,失去抗菌活性。

因此青霉素的钠盐或钾盐必须做成粉针剂,使用前新鲜配制。

5)氯霉素的结构中有两个手性碳原子,临床使用的是哪一种光学异构体?

在全合成过程中如何得到该光学异构体?

氯霉素的结构中含有两个手性碳原子,有四个旋光异构体。

其中仅1R,2R(-)即D(-)苏阿糖型有抗菌活性,为临床使用的氯霉素。

在氯霉素的全合成过程中,还原一步选择立体选择性还原剂异丙醇铝得到(±)苏阿糖型-1-对-硝基苯基-2-氨基丙二醇(氨基物),再采用诱导结晶法进行拆分,得到D(-)-苏阿糖型氨基物,最后得到的氯霉素的构型为lR,2R(-)即D(-)苏阿糖型。

6)试说明耐

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1