工程材料答案.docx

上传人:b****3 文档编号:551165 上传时间:2022-10-11 格式:DOCX 页数:17 大小:39.48KB
下载 相关 举报
工程材料答案.docx_第1页
第1页 / 共17页
工程材料答案.docx_第2页
第2页 / 共17页
工程材料答案.docx_第3页
第3页 / 共17页
工程材料答案.docx_第4页
第4页 / 共17页
工程材料答案.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

工程材料答案.docx

《工程材料答案.docx》由会员分享,可在线阅读,更多相关《工程材料答案.docx(17页珍藏版)》请在冰豆网上搜索。

工程材料答案.docx

工程材料答案

第一章金属的结构和结晶

晶格:

表示晶体中原子排列规律的空间格子叫做晶格

晶胞:

是表示晶格几何特征的最基本单位。

晶格常数:

晶胞各援边的尺寸abc

过冷度:

实际结晶温度总是低于理论温度结晶温度的,这种现象叫做过冷现象。

两者的温度差值被称为过冷度

变质处理:

有意地向液态金属中加入某些及结构相近的髙熔点杂质,就可以依靠非自发形核,提髙形核率,使晶粒细化。

位错:

在晶格中,发生一列或者几列原子由规律错排的现象。

第二章金属塑性变形和再结晶

滑移:

滑移指在切应力作用下,晶体的一部分沿一泄的晶而和晶向,相对于另一部分发生相对位移。

滑移系:

晶体中一个滑移而及该面上一个滑移方向的组合。

临界切应力:

能引起滑移的最小切应力。

加工硬化:

金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象。

又称冷作变化。

回复:

在加热温度较低时,变形金属中的一些点缺陷和位错的迁移而引起某些晶内变化。

再结晶:

经冷变形后的金属加热到再结晶温度时,又会发生相反转变,新的无应变的晶粒取代原先变形的晶粒,金属的性能也恢复到变形前的情况。

这一过程称为再结晶。

临界变形度:

晶粒异常长大的现象

热加工:

在再结晶温度以上的加工。

冷加工:

在再结晶温度以下的加工。

第三章二元合金及其相图

合金:

一种金属元素及另外一种或者几种金属或非金属元素相互溶合而形成的具有金属特性的物质

组元:

组成合金的最基本,能够独立存在的物质。

相:

在金属或合金中,凡是具有相冋成分,相同晶体结构并及其他部分由界而分开的均匀的组成部分。

组织:

由相组成,是由于组成相的种类,相对数量,晶粒形状,大小及分布形态等的不同,而分别具有不同形态特征的相得组成物。

相图:

表示合金系中含金在平衡条件下各相的存在状态及温度,成分间的关系图解。

置换固溶体:

溶质原子占据溶剂晶格中的结点位置而形成的固溶体称之为置换固溶体。

间隙固溶体:

合金中溶质元素的原子融入溶剂原子点阵的间隙位宜所形成的固溶体。

金属化合物:

合金组元发生相互作用而形成一种具有金属特性的物质成为金属化合物。

枝晶偏析:

如果结晶过程冷却速度较快,以树枝晶方式结晶的固溶体中,先后结晶的树枝状晶体内成分不均匀的现象。

固溶强化:

通过向溶剂金属中溶入溶质元素形成固溶体,而使固溶体合金强度,硬度升高的现象。

弥散强化:

当二次相以细小粒子均匀弥散地在固溶体晶粒中析出,会是合金的强度,駛度增加,塑性,韧性稍有降低。

第四章铁碳合金

铁素体:

铁素体是碳溶于体心立方晶格的a-F中的所形成的间隙固溶体°

珠光体:

珠光体是奥氏体及渗碳体组成的共析体。

奥氏体:

碳溶于而心立方晶格r-F之中所形成的间隙化合物。

渗碳体:

一种具有复杂晶格的间隙化合物

莱氏体:

液态铁碳合金发生共晶转变形成的奥氏体和渗碳体所形成的共晶体。

(当温度髙于727,莱氏体由奥氏体和渗碳体组成,符号为LcL

低温莱氏体:

由珠光体,二次渗碳体和共晶渗碳体组成。

热脆:

当钢材在1000-1200进行热加工时,由于共晶体溶化会沿着奥氏体晶界开裂,钢材变得极脆。

冷脆:

磷固溶于铁素体中,虽然可使铁素体的强度,硬度提髙,但室温下钢的塑性,韧性急剧下降。

第五章钢的热处理

奥氏体的起始晶粒度:

珠光体刚刚全部转化为奥氏体的晶粒大小。

实际晶粒度:

钢在某一具体热处理条件下所获得奥氏体晶粒大小。

本质晶粒度:

用来比较在一左条件下的奥氏体晶粒长大的倾向。

索氏体:

在650-600温度范围形成的细片状珠光体。

屈氏体:

在600——550温度范围内形成的极细珠光体匚

上贝氏体:

形成温度为550-350范用内,形态为羽毛状,其铁素体呈条状平行排列,细小渗碳体以不连续短杆状形态分布于条状铁素体之间的晶界上。

下贝氏体:

形成温度为350-Ms范国内,其铁素体呈针状极细小的碳化物均匀,并及铁素体针长轴呈55-65角方向上分布于铁素体针内部。

马氏体:

(当钢的过冷度奥氏体大鱼淬火临界速度冷却到M以下时将发生马氏体转变),从本质上说马氏体就是碳在a-F中的过饱和间隙固溶体。

过冷奥氏体:

当奥氏体冷至临界温度以下,奥氏体处于不稳圧状态,称为过冷奥氏体。

残余奥氏体:

淬火未能转变为马氏体而保留到室温的奥氏体。

淬透性:

至奥氏体化后的钢在淬火时获得马氏体而不形成其他组织的能力。

淬火临界冷却速度:

曲线上有一临界冷却速度v及转变开始线相切,它是获得全部马氏体组织的最小冷却速度。

淬硬性:

钢淬火后获得马氏体组织的最髙硬度。

完全退火:

将钢件加热到Ac3以上30—50,保温一泄时间后,随炉缓慢冷却至500度以下后在空气中冷却至室温的一种热处理工艺。

等温退火:

某些髙合金钢加热到Ac3以上30—50度,保温到一左时间奥氏体化后,以较快速度冷却到珠光体C曲线鼻尖部位,并进行等温转变,转变结束后,可空冷至室温的工艺。

球化退火:

将钢加热至Acl-Acm之间.经保温后缓慢冷却使钢中碳化物球化,获得球化组织的一种热处理工艺。

正火:

将钢件加热到Ac3•或Accm以上30—50度,保温后从炉中取出再空气中冷却的一种工艺。

淬火:

将钢加热,保温奥氏体化后,以大于Vk速度冷却得到马氏体的组织的热处理工艺。

回火:

将淬火后的钢加热到临界温度Acl以下某一温度,保温一泄的时间然后冷到室温的一种热处理工艺。

化学热处理:

将金属工件放入含有某种活性原子的化学介质中,通过使介质中的活性原子被吸收,扩散渗入工件一圧深度的表层,改变表层的化学成分和组织并获得及心部不同的性能和热处理。

回火马氏体:

由单相过饱和a固溶体分解为由过饱和a固溶体及e碳化物组成的两相混合物,这种混合物称为回火马氏体。

回火屈氏体:

有片状铁素体和极细粒状渗碳体组成。

调质处理:

淬火及髙温回火的热处理工艺。

表面淬火:

利用快速加热装置将工件表而迅速加热至淬火温度,而不等量传至中心,便立即进行淬火冷却的一种热处理工艺。

第六章合金钢

回火稳定性:

表示钢会回火时发生软化过程的抵抗能力。

二次硬化:

在一次回火温度下硬度出现邮值的现象。

回火脆性:

随回火髙温升髙而冲击韧性下降的现象。

热硬性:

刀具在髙温下保持髙硬度的能力。

调质钢:

经过调制处理后使用的碳素结构钢和合金结构钢。

渗碳钢:

对低碳钢进行表而渗碳,并经淬火和低温回火,以提髙表而的硬度,耐磨性,而心部仍保持一怎的强度及较髙的塑性,韧性。

二次淬火:

在高介金钢中回火冷却时残余奥氏体转变为马氏体,而致使駛度升高的现象。

第七章铸铁

石墨化:

铸铁中碳原子的析出并形成石墨的过程

可锻铸钢:

可锻铸钢是由白口铸铁经可锻化退火后获得,瓦仃墨团絮状或雪花状,它大大减弱了对基体的割裂能力,具有较髙的强度,并有一立得塑性和韧性,其力学性能较普通灰铸铁高,但因生产周期长,成本高,只用于制造一些重要的零件匚

球墨铸铁:

铸铁组织中石墨形态是球状,对基体的割裂和盈利集中都是大大减小,因而球墨铸铁具有较高的硬度和良好的塑性和韧性,力学性能较髙,因而得到了愈来愈广泛的应用。

灰口铸铁:

铸铁组织中的石墨形态呈片状结晶,这种铸铁性能虽不太髙,但因生产工艺简单,成本低,价格低廉故在工业上应用广泛。

第八章有色金属材料

固溶处理;将合金加热为单相a固溶体,然后将其急冷得到的不稳泄过饱和的a固溶体的热处理方法

巴氏合金(个人发挥):

例如锡基巴氏合金,锡中形成3固溶体为软基体,加入的其他元素形成的古溶体为硬质点,最终提髙了合金的耐磨性。

自然时效:

在室温下进行的时效

人工时效:

在加热条件下进行的时效

第一章金属的结构和结晶

1.金属为何具有良好的导电性,正电阻温度系数以及良好的塑性变形能力?

1,良好的导电性是因为在外界电场作用下,其中的自由电子能沿电场方向立向移动,易形成电流。

2,良好的塑像变形能力因为金属晶体受到外力作用而使原子发生相对移动,金属正离子始终被包困在电子云中,即金属键不受破坏而依然存在,从而表现出良好的塑性变形能力。

3,正电阻温度系数因其考电子导电,当温度上升,正誇子或原子箴动加剧,阻碍自由电子通过,式电阻升高。

2.金属晶体中常见的晶格类型有哪几种?

属于这几种常见的晶格类型有哪些?

体心立方,铁路餌铝帆。

而心立方,铜金银铝铁。

密排六方晶格,镁锌钛。

四、为什么金属结晶一宦要有过冷度?

过冷度及冷却速度有什么关系?

对结晶后晶粒大小有何影响?

结晶温度Tn及理论结晶温度TO之间的温度差成为“过冷度S要是液体进行结晶,就必须是结晶温度低于理论结晶温度,是液体及晶体之间长生能量差,即“自由能差”形成液体向晶体转变的驱动力,才能完成结晶过程,所以金属结晶一左要有过冷度。

冷却速度快,过冷度大,过冷度大,晶粒细小。

第二章金属塑性变形和再结晶

1、为什么金属晶粒越细,强度越髙,塑性韧性也越好?

答:

金属的晶粒越细.其晶界的总而积越大,塑性变形的抗力也越大,强化作用也越大;晶粒越细,单位体积的晶粒越多,变形时同样的变形量可以有更多的晶粒来承担,是塑性变形越均匀些,减小应力集中,推迟了最终引起断裂的裂纹的发生合发展,从而提髙了金属的塑性和韧性。

所以晶粒越细,强度、硬度越髙:

塑性韧性越好。

2、什么叫加工硬化?

他给生产带来哪些好处和困难?

加工硬化:

经过冷态下塑性变形之后的金属的力学性能要发生很大的变化,其强度和硬度随变形量的增加而增加,同时塑性却随之降低,这种现象叫加工硬化或冷作硬化。

优点:

冷挤压.冷冲压.冷轧制等加工工艺会使产品具有尺寸精度高及表而质量好。

缺点:

金属的加工li更化使其强度和硬度上升.塑性下降,必然给金属材料的加工带来困难。

3、热加工对金属的组织和性能有什么影响?

金属在热加工时为什变形阻力较小?

热加工后金属的组织及性能产生很大的变化主要表现在以下几个方而:

1)经过热加工后,可以把铸态金属中粗大的枝晶、柱状晶以及夹杂物破碎为细小的晶粒,从而是晶粒细化。

2)通过热加工,可是铸态金属中的气孔、疏松焊接,提高至密度。

3)热加工还可以改变铸态金属中的成分偏析和夹杂物的分布,是原来沿着树枝晶分布的偏析元素和夹杂物发生改变,而是他们沿变形方向拉长分布,形成在宏观监测时通常所称的“流线S流线时金属的力学性能出现明显的各向异性,及流线平行方向的强度、塑性.韧性明显大于垂直方向相应的性能。

4、金属冷加工塑性变形后,组织和性能发生什么变化?

组织结构发生的变化:

1)为错密度增加,晶粒破碎••亚结构增加。

2).晶粒拉长,岀现纤维状组织.产生织构现象,晶界模糊不淸。

3)\出现残余应力。

性能:

金属的加工硬化使其强度和硬度上升,塑性下降,必然给金属材料的加工带来困难:

电阻上升,耐蚀性降低

5、冷加工塑性变形后,经加热,发生回复,再结晶的过程中,组织和性能会发生什么变化?

(回复)晶粒大小形貌无明显变化,强度硬度和塑性不明显变化,内应力下降,脆性降低,

金属中的点位错和缺陷发生迁移(再结晶)组织上完全变成均匀的等轴晶粒,强度升髙,塑性升髙

6、金属塑性变形造成哪几种残余应力?

残余应力对机械零件可能产生哪些影响?

产生的原因主要是由于金属的塑性变形具有严重的不均匀性。

参及内应力通常分为三种:

金属表层及心部的变形量不同会形成第一种内应力:

晶粒之间或经历内部不同区域之间的变形量的不同会产生第二种内应力:

位错等晶格缺陷在塑像变形过程中的大量增加引起缺陷附近晶格畸变会产生第三种内应力。

第三种内应力是使金属强化的主要原因,也是变形金属的主要内应力。

前两种内应力在多数情况下会降低金属的强度,并且有可能发生一泄的应力松弛而引起金属的变形。

但是,表而压力的形成可以有效的提高工件的疲劳强度,所以弹簧和齿轮等零件往往采用喷丸处理,这也是利用参及内应力的例证。

7、金属再结晶温度受到哪些因素的影响?

1),金屈的预先变形程度越大,再结晶的温度

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 职业教育 > 职高对口

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1