【20份】2016年高中数学人教版新课标必修1全套教案(含三维目标).docx

上传人:b****9 文档编号:54782 上传时间:2022-10-01 格式:DOCX 页数:81 大小:1,007.72KB
下载 相关 举报
【20份】2016年高中数学人教版新课标必修1全套教案(含三维目标).docx_第1页
第1页 / 共81页
【20份】2016年高中数学人教版新课标必修1全套教案(含三维目标).docx_第2页
第2页 / 共81页
【20份】2016年高中数学人教版新课标必修1全套教案(含三维目标).docx_第3页
第3页 / 共81页
【20份】2016年高中数学人教版新课标必修1全套教案(含三维目标).docx_第4页
第4页 / 共81页
【20份】2016年高中数学人教版新课标必修1全套教案(含三维目标).docx_第5页
第5页 / 共81页
点击查看更多>>
下载资源
资源描述

【20份】2016年高中数学人教版新课标必修1全套教案(含三维目标).docx

《【20份】2016年高中数学人教版新课标必修1全套教案(含三维目标).docx》由会员分享,可在线阅读,更多相关《【20份】2016年高中数学人教版新课标必修1全套教案(含三维目标).docx(81页珍藏版)》请在冰豆网上搜索。

【20份】2016年高中数学人教版新课标必修1全套教案(含三维目标).docx

2016

年高中数学人教版新课标

必修

全套优秀教案

1

(含三维目标)

1

目录

必修1

集合与函数概念集合

第一章

1.1

1.2

阅读与思考集合中元素的个数函数及其表示

1.3

函数的基本性质

信息技术应用用计算机绘制函数图象

阅读与思考函数概念的发展历程

实习作业

小结

第二章基本初等函数(Ⅰ)

2.1指数函数

信息技术应用借助信息技术探究指数函数的性质

2.2

对数函数

阅读与思考探究也发现

对数的发明

互为反函数的两个函数图象之间的关系

2.3幂函数

小结

复习参考题

第三章函数的应用

3.1函数与方程

阅读与思考中外历史上的方程求解

函数模型及其应用

信息技术应用收集数据并建立函数模型实习作业

3.2

信息技术应用借助信息技术方程的近似解

小结

复习参考题

2

第一章 集合与函数

1.1.1集合的含义与表示

§

一.教学目标:

l. 知识与技能

(1)通过实例,了解集合的含义,体会元素与集合的属于关系;

(2)知道常用数集及其专用记号;

(3)了解集合中元素的确定性.互异性.无序性;

(4)会用集合语言表示有关数学对象;

(5)培养学生抽象概括的能力.

2.过程与方法

(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.

(2)让学生归纳整理本节所学知识.

3.情感.态度与价值观

使学生感受到学习集合的必要性,增强学习的积极性.二.教学重点.难点

重点:

集合的含义与表示方法.

难点:

表示法的恰当选择.三.学法与教学用具

1.学法:

学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本

节课的教学目标.

2.教学用具:

投影仪.四.教学思路

( 一)创设情景,揭示课题

1.教师首先提出问题:

在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?

引导学生回忆.举例和互相交流.与此同时,教师对学生的活动给予评价.

2.接着教师指出:

那么,集合的含义是什么呢?

这就是我们这一堂课所要学习的内容.

(二)研探新知

1 .教师利用多媒体设备向学生投影出下面9个实例:

(1)1 —20以内的所有质数;

(2)我国古代的四大发明;

(3)所有的安理会常任理事国;

(4)所有的正方形;

(5)海南省在2004年9月之前建成的所有立交桥;

(6)到一个角的两边距离相等的所有的点;

(7)

方程x2-5x+6=0的所有实数根;

(8)

不等式x-3>0的所有解;

3

.日本与集合A的

(9)国兴中学2004年9月入学的高一学生的全体.

2.教师组织学生分组讨论:

这9个实例的共同特征是什么?

3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.

一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.

4.

教师指出:

集合常用大写字母A,B,C,D,„表示,元素常用小写字母

a,b,c,d„

表示.

( 三)质疑答辩,排难解惑,发展思维

1.教师引导学生阅读教材中的相关内容,思考:

集合中元素有什么特点?

并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:

确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.

2.教师组织引导学生思考以下问题:

判断以下元素的全体是否组成集合,并说明理由:

(1)大于3小于11的偶数;

(2)我国的小河流.

让学生充分发表自己的建解.

3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.

4.教师提出问题,让学生思考

(1)如果用A表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b

是高一(4)班的一位同学,那么a,b与集合A分别有什么关系?

由此引导学生得出元素与集

合的关系有两种:

属于和不属于.

如果a是集合A的元素,就说a属于集合A,记作aÎA.

如果a不是集合A的元素,就说a不属于集合A,记作aÏA.

(2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国关系分别是什么?

请用数学符号分别表示.

(3)让学生完成教材第6页练习第1题.

5. 教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题.

6

(1)

(2)

什么?

(3)

.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:

要表示一个集合共有几种方式?

试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?

适用的对象是

如何根据问题选择适当的集合表示法?

使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

(四)巩固深化,反馈矫正

4

教师投影学习:

(1)用自然语言描述集合{1,3,5,7,9};

(2)

用例举法表示集合A={xÎN|1£x<8}

(3) 试选择适当的方法表示下列集合:

教材第6页练习第2题.

(五)归纳整理,整体认识

在师生互动中,让学生了解或体会下例问题:

1.本节课我们学习过哪些知识内容?

2.你认为学习集合有什么意义?

3.选择集合的表示法时应注意些什么?

( 六)承上启下,留下悬念

1 .课后书面作业:

第13页习题1.1A组第4题.

2.元素与集合的关系有多少种?

如何表示?

类似地集合与集合间的关系又有多少种呢?

如何表示?

请同学们通过预习教材.

教学目标:

1.知识与技能

(1)了解集合之间包含与相等的含义,能识别给定集合的子集。

(2)理解子集.真子集的概念。

(3)能使用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用.

2.过程与方法

让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.

3 .情感.态度与价值观

(1)树立数形结合的思想.

(2)体会类比对发现新结论的作用.二.教学重点.难点

重点:

集合间的包含与相等关系,子集与其子集的概念.

难点:

难点是属于关系与包含关系的区别.三.学法与教学用具

1.学法:

让学生通过观察.类比.思考.交流.讨论,发现集合间的基本关系.

2.学用具:

投影仪.四.教学思路

( —)创设情景,揭示课题

问题l:

实数有相等.大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?

让学生自由发言,教师不要急于做出判断。

而是继续引导学生;欲知谁正确,让我们一起来观察.研探.

(二)研探新知

1.1.2

集合间的基本关系

一.

§

5

(1)A={1,2,3},B={1,2,3,4,5};

(2) 设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的

集合;

投影问题2:

观察下面几个例子,你能发现两个集合间有什么关系了吗?

(3)

设C={x|x是两条边相等的三角形

},D={x|x是等腰三角形};

(4)

E={2,4,6},F={6,4,2}.

组织学生充分讨论.交流,使学生发现两个集合所含元素范围存在各种关系,从而类

比得出两个集合之间的关系:

①一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为B的子集.

记作:

AÍB

(或BÊA)

读作:

A含于B(或B包含A).

②如果两个集合所含的元素完全相同,那么我们称这两个集合相等.

教师引导学生类比表示集合间关系的符号与表示两个实数大小关系的等号之间有什么类似之处,强化学生对符号所表示意义的理解。

并指出:

为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图。

如图l和图2分别是表

示问题2中实例1和实例3的Venn图.

B

图1

A(B)

图2

投影问题3:

与实数中的结论“若

a³b,且b³a,则a=b”相类比,在集合中,你能

得出什么结论?

教师引导学生通过类比,思考得出结论:

若AÍB,且BÍA,则A=B.

问题4:

请同学们举出几个具有包含关系.相等关系的集合实例,并用Venn图表示.

学生主动发言,教师给予评价.

( 三)学生自主学习,阅读理解

然后教师引导学生阅读教材第7页中的相关内容,并思考回答下例问题:

(1)集合A是集合B的真子集的含义是什么?

什么叫空集?

(2)集合A是集合B的真子集与集合A是集合B的子集之间有什么区别?

(3)0 ,{0}与Æ三者之间有什么关系?

(4)

包含关系{a}ÍA与属于关系aÎA正义有什么区别?

试结合实例作出解释.

6

(5)空集是任何集合的子集吗?

空集是任何集合的真子集吗?

(6)能否说任何一人集合是它本身的子集,即AÍA?

(7)对于集合A,B,C,D,如果AÍB,BÍC,那么集合A与C有什么关系?

教师巡视指导,解答学生在自主学习中遇到的困惑过程,然后让学生发表对上述问题看法.

( 四)巩固深化,发展思维

1. 学生在教师的引导启发下完成下列两道例题:

例1.某工厂生产的产品在质量和长度上都合格时,该产品才合格。

若用A表示合格产品,B表示质量合格的产品的集合,C表示长度合格的产品的集合.则下列包含关系哪些成立?

AÍB,BÍA,AÍC,CÍA

试用Venn图表示这三个集合的关系。

例2写出集合{0,1,2)的所有子集,并指出哪些是它的真子集.

2.学生做教材第8页的练习第l~3题,教师及时检查反馈。

强调能确定是真子集关系的最好写真子集,而不写子集.

(五)归纳整理,整体认识

1 .请学生回顾本节课所学过的知识内容有建些,所涉及到的主要数学思想方法又那些.

2. 在本节课的学习过程中,还有那些不太明白的地方,请向老师提出.

(六)布置作业

第13页习题1.1A组第5题.

一.教学目标:

1. 知识与技能

(1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.

(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.

(3)能使用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用.

2.过程与方法

学生通过观察和类比,借助Venn图理解集合的基本运算.

3.情感.态度与价值观

(1)进一步树立数形结合的思想.

(2)进一步体会类比的作用.

(3)感受集合作为一种语言,在表示数学内容时的简洁和准确.二.教学重点.难点

重点:

交集与并集,全集与

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 动物植物

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1