可控硅知识的问与答.docx

上传人:b****3 文档编号:5411907 上传时间:2022-12-16 格式:DOCX 页数:16 大小:135.88KB
下载 相关 举报
可控硅知识的问与答.docx_第1页
第1页 / 共16页
可控硅知识的问与答.docx_第2页
第2页 / 共16页
可控硅知识的问与答.docx_第3页
第3页 / 共16页
可控硅知识的问与答.docx_第4页
第4页 / 共16页
可控硅知识的问与答.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

可控硅知识的问与答.docx

《可控硅知识的问与答.docx》由会员分享,可在线阅读,更多相关《可控硅知识的问与答.docx(16页珍藏版)》请在冰豆网上搜索。

可控硅知识的问与答.docx

可控硅知识的问与答

可控硅知识的问与答

陈浩南

一、可控硅的概念和结构?

晶闸管又叫可控硅。

自从20世纪50年代问世以来已经发展成了一个大的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。

今天大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极〔图2(a)〕:

第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。

从晶闸管的电路符号〔图2(b)〕可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。

图2

二、晶闸管的主要工作特性

为了能够直观地认识晶闸管的工作特性,大家先看这块示教板(图3)。

晶闸管VS与小灯泡EL串联起来,通过开关S接在直流电源上。

注意阳极A是接电源的正极,阴极K接电源的负极,控制极G通过按钮开关SB接在3V直流电源的正极(这里使用的是KP5型晶闸管,若采用KP1型,应接在1.5V直流电源的正极)。

晶闸管与电源的这种连接方式叫做正向连接,也就是说,给晶闸管阳极和控制极所加的都是正向电压。

现在我们合上电源开关S,小灯泡不亮,说明晶闸管没有导通;再按一下按钮开关SB,给控制极输入一个触发电压,小灯泡亮了,说明晶闸管导通了。

这个演示实验给了我们什么启发呢?

图3

这个实验告诉我们,要使晶闸管导通,一是在它的阳极A与阴极K之间外加正向电压,二是在它的控制极G与阴极K之间输入一个正向触发电压。

晶闸管导通后,松开按钮开关,去掉触发电压,仍然维持导通状态。

晶闸管的特点:

是“一触即发”。

但是,如果阳极或控制极外加的是反向电压,晶闸管就不能导通。

控制极的作用是通过外加正向触发脉冲使晶闸管导通,却不能使它关断。

那么,用什么方法才能使导通的晶闸管关断呢?

使导通的晶闸管关断,可以断开阳极电源(图3中的开关S)或使阳极电流小于维持导通的最小值(称为维持电流)。

如果晶闸管阳极和阴极之间外加的是交流电压或脉动直流电压,那么,在电压过零时,晶闸管会自行关断。

三、用万用表可以区分晶闸管的三个电极吗?

怎样测试晶闸管的好坏呢?

普通晶闸管的三个电极可以用万用表欧姆挡R×100挡位来测。

大家知道,晶闸管G、K之间是一个PN结〔图2(a)〕,相当于一个二极管,G为正极、K为负极,所以,按照测试二极管的方法,找出三个极中的两个极,测它的正、反向电阻,电阻小时,万用表黑表笔接的是控制极G,红表笔接的是阴极K,剩下的一个就是阳极A了。

测试晶闸管的好坏,可以用刚才演示用的示教板电路(图3)。

接通电源开关S,按一下按钮开关SB,灯泡发光就是好的,不发光就是坏的。

四、晶闸管在电路中的主要用途是什么?

普通晶闸管最基本的用途就是可控整流。

大家熟悉的二极管整流电路属于不可控整流电路。

如果把二极管换成晶闸管,就可以构成可控整流电路。

现在我画一个最简单的单相半波可控整流电路〔图4(a)〕。

在正弦交流电压U2的正半周期间,如果VS的控制极没有输入触发脉冲Ug,VS仍然不能导通,只有在U2处于正半周,在控制极外加触发脉冲Ug时,晶闸管被触发导通。

现在,画出它的波形图〔图4(c)及(d)〕,可以看到,只有在触发脉冲Ug到来时,负载RL上才有电压UL输出(波形图上阴影部分)。

Ug到来得早,晶闸管导通的时间就早;Ug到来得晚,晶闸管导通的时间就晚。

通过改变控制极上触发脉冲Ug到来的时间,就可以调节负载上输出电压的平均值UL(阴影部分的面积大小)。

在电工技术中,常把交流电的半个周期定为180°,称为电角度。

这样,在U2的每个正半周,从零值开始到触发脉冲到来瞬间所经历的电角度称为控制角α;在每个正半周内晶闸管导通的电角度叫导通角θ。

很明显,α和θ都是用来表示晶闸管在承受正向电压的半个周期的导通或阻断范围的。

通过改变控制角α或导通角θ,改变负载上脉冲直流电压的平均值UL,实现了可控整流。

五、在桥式整流电路中,把二极管都换成晶闸管是不是就成了可控整流电路了呢?

在桥式整流电路中,只需要把两个二极管换成晶闸管就能构成全波可控整流电路了。

现在画出电路图和波形图(图5),就能看明白了。

六、晶闸管控制极所需的触发脉冲是怎么产生的呢?

晶闸管触发电路的形式很多,常用的有阻容移相桥触发电路、单结晶体管触发电路、晶体三极管触发电路、利用小晶闸管触发大晶闸管的触发电路,等等。

今天大家制作的调压器,采用的是单结晶体管触发电路。

七、什么是单结晶体管?

它有什么特殊性能呢?

单结晶体管又叫双基极二极管,是由一个PN结和三个电极构成的半导体器件(图6)。

我们先画出它的结构示意图〔图7(a)〕。

在一块N型硅片两端,制作两个电极,分别叫做第一基极B1和第二基极B2;硅片的另一侧靠近B2处制作了一个PN结,相当于一只二极管,在P区引出的电极叫发射极E。

为了分析方便,可以把B1、B2之间的N型区域等效为一个纯电阻RBB,称为基区电阻,并可看作是两个电阻RB2、RB1的串联〔图7(b)〕。

值得注意的是RB1的阻值会随发射极电流IE的变化而改变,具有可变电阻的特性。

如果在两个基极B2、B1之间加上一个直流电压UBB,则A点的电压UA为:

若发射极电压UE

发射极电流IE继续增加,发射极电压UE不断下降,当UE下降到谷点电压UV以下时,单结晶体管就进入截止状态。

八、怎样利用单结晶体管组成晶闸管触发电路呢?

单结晶体管组成的触发脉冲产生电路在今天大家制作的调压器中已经具体应用了。

为了说明它的工作原理,我们单独画出单结晶体管张弛振荡器的电路(图8)。

它是由单结晶体管和RC充放电电路组成的。

合上电源开关S后,电源UBB经电位器RP向电容器C充电,电容器上的电压UC按指数规律上升。

当UC上升到单结晶体管的峰点电压UP时,单结晶体管突然导通,基区电阻RB1急剧减小,电容器C通过PN结向电阻R1迅速放电,使R1两端电压Ug发生一个正跳变,形成陡峭的脉冲前沿〔图8(b)〕。

随着电容器C的放电,UE按指数规律下降,直到低于谷点电压UV时单结晶体管截止。

这样,在R1两端输出的是尖顶触发脉冲。

此时,电源UBB又开始给电容器C充电,进入第二个充放电过程。

这样周而复始,电路中进行着周期性的振荡。

调节RP可以改变振荡周期。

九、在可控整流电路的波形图中,发现晶闸管承受正向电压的每半个周期内,发出第一个触发脉冲的时刻都相同,也就是控制角α和导通角θ都相等,那么,单结晶体管张弛振荡器怎样才能与交流电源准确地配合以实现有效的控制呢?

为了实现整流电路输出电压“可控”,必须使晶闸管承受正向电压的每半个周期内,触发电路发出第一个触发脉冲的时刻都相同,这种相互配合的工作方式,称为触发脉冲与电源同步。

怎样才能做到同步呢?

大家再看调压器的电路图(图1)。

请注意,在这里单结晶体管张弛振荡器的电源是取自桥式整流电路输出的全波脉冲直流电压。

在晶闸管没有导通时,张弛振荡器的电容器C被电源充电,UC按指数规律上升到峰点电压UP时,单结晶体管VT导通,在VS导通期间,负载RL上有交流电压和电流,与此同时,导通的VS两端电压降很小,迫使张弛振荡器停止工作。

当交流电压过零瞬间,晶闸管VS被迫关断,张弛振荡器得电,又开始给电容器C充电,重复以上过程。

这样,每次交流电压过零后,张弛振荡器发出第一个触发脉冲的时刻都相同,这个时刻取决于RP的阻值和C的电容量。

调节RP的阻值,就可以改变电容器C的充电时间,也就改变了第一个Ug发出的时刻,相应地改变了晶闸管的控制角,使负载RL上输出电压的平均值发生变化,达到调压的目的。

双向晶闸管的T1和T2不能互换。

否则会损坏管子和相关的控制电路。

如何鉴别可控硅的三个极

鉴别可控硅三个极的方法很简单,根据P-N结的原理,只要用万用表测量一下三个极之间的电阻值就可以。

阳极与阴极之间的正向和反向电阻在几百千欧以上,阳极和控制极之间的正向和反向电阻在几百千欧以上(它们之间有两个P-N结,而且方向相反,因此阳极和控制极正反向都不通)。

控制极与阴极之间是一个P-N结,因此它的正向电阻大约在几欧-几百欧的范围,反向电阻比正向电阻要大。

可是控制极二极管特性是不太理想的,反向不是完全呈阻断状态的,可以有比较大的电流通过,因此,有时测得控制极反向电阻比较小,并不能说明控制极特性不好。

另外,在测量控制极正反向电阻时,万用表应放在R*10或R*1挡,防止电压过高控制极反向击穿。

若测得元件阴阳极正反向已短路,或阳极与控制极短路,或控制极与阴极反向短路,或控制极与阴极断路,说明元件已损坏。

双向可控硅控制线路检修一例

张海清(河南省淅川县汽车配件厂)

前不久,我厂化验室的一台定碳炉出现故障。

电路如图1所示。

一开始工作正常,工作几分钟或十几分钟以后,负载断电。

停几分钟后又正常,过一会儿又断电,此状况反复出现。

我首先检查了电源和负载,均正常。

初步判断是可控硅控制系统软故障。

图1主回路原理接线图

根据以上情况,我进一步检查了主回路可控硅G1、G2和控制回路电源变压器T1,均正常。

故障进一步缩小至控制线路板。

如图2。

图2控制回路原理接线图

由于线路板并不大,元件也不多。

我首先对整块板上所有元件重新焊接一遍,排除虚焊造成的时断时续现象。

插上线路板试验,故障依然存在。

然后采用分析测量的方法,对线路板上重点部位进行电压测量。

同时对被测点,在工作正常时与出现故障时的电压进行记录,分析对比。

为了节省时间,我采用优选法。

首先从中间一点振荡器工作电压,即C2两端电压开始测量。

这个电压不论是正常工作时或出现故障时,变化不大,因为接入了反馈信号。

这说明振荡器以前的电路都是正常的。

这就省去了测量给定电路和反馈比较电路的时间。

接着我又检查振荡器工作情况。

先测量晶体管3DG7C的工作点。

发现3DG7C集电极与发射极之间电压Uce在正常工作时和出现故障时变化比较大(用BT830B型数字万用表直流20V档,测得变化在0~12.5V之间)。

经过分析我认为,存在故障的元件可能有三个:

一是3DG7C本身,二是电容器C4,三是单结晶体管BT33F。

三个元件中存在故障可能性最大的是BT33F。

因为3DG7C的电压Uce是由BT33F产生的,所以我决定更换单结晶BT33F。

更换BT33F以后,通电试车,一切正常。

可控硅元件—可控硅元件的结构和型号

一种以硅单晶为基本材料的P1N1P2N2四层三端器件,创制于1957年,由于它特性类似于真空闸流管,所以国际上通称为硅晶体闸流管,简称晶闸管T。

又由于晶闸管最初应用于可控整流方面所以又称为硅可控整流元件,简称为可控硅SCR。

在性能上,可控硅不仅具有单向导电性,而且还具有比硅整流元件(俗称“死硅”)更为可贵的可控性。

它只有导通和关断两种状态。

可控硅能以毫安级电流控制大功率的机电设备,如果超过此频率,因元件开关损耗显著增加,允许通过的平均电流相降低,此时,标称电流应降级使用。

可控硅的优点很多,例如:

以小功率控制大功率,功率放大倍数高达几十万倍;反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪音;效率高,成本低等等。

可控硅的弱点:

静态及动态的过载能力较差;容易受干扰而误导通。

可控硅从外形上分类主要有:

螺栓形、平板形和平底形。

一、可控硅元件的结构和型号

1、结构

不管可控硅的外形如何,它们的管芯都是由P型硅和N型硅组成的四层P1N1P2N2结构。

见图1。

它有三个PN结(J1、J2、J3),从J1结构的P1层引出阳极A,从N2层引出阴级K,从P2层引出控制极G,所以它是一种四层三端的半导体器件。

图1、可控硅结构示意图和符号图

2、型号

目前国产可控硅的型号有部颁新、旧标准两种,新型号将逐步取代旧型号。

表1KP型可控硅新旧标准主要特性参数对照表

参数/序号

部颁新标准(JB1144-75)

部颁旧标准(JB1144-71)

KP型右控硅整流元件

3CT系列可控硅整流元件

1

额定通态平均电流(IT(AV))

额定正向平均值电流(IF)

2

断态重复峰值电压(UDRM)

正向阻断峰值电压(UPF)

3

反向重复峰值电压(URRM)

反向峰值电压(VPR)

4

断态重复平均电流(IDR(AV))

正向平均漏电流(I)

5

反向重复平均电流(IRR(AV))

反向平均漏电电流(IRL)

6

通态平均电压(UT(AV))

最大正向平均电压降(VF)

7

门极触发电流(IGT)

控制极触发电流(Ig)

8

门极触发电压(UGT)

控制极触发电压(Vg)

9

断态电压临界上升率(du/dt)

极限正向电压上升率(dV/dt)

10

维持电流(IH)

维持电流(IH)

11

额定结温(TjM)

额定工作结温(Tj)

KP型可控硅的电流电压级别见表2

表2KP型可控硅电流电压级别

额定通态平均电流IT(AV)

(A)

1,5,10,20,30,50,100,200,300,400,500,600,700,800,100

正反向重复峰值电压UDRM,URRM(×100)(V)

1~10,12,14,16,18,20,22,24,26,,28,30

通态平均电压UT(AV)(V)

A

B

C

D

E

F

G

H

I

≤0.4

0.4~0.5

0.5~0.6

0.6~0.7

0.7~0.8

0.8~0.9

0.9~1.0

1.0~1.1

1.1~1,2

示例:

(1)KP5-10表示通态平均电流5安,正向重复峰值电压1000伏的普通反向阻断型可控硅元件。

(2)KP500-12D表示通态平均电流500安,正、反向重复峰值电压1200伏,通态平均电压0.7伏的业通反向阻断型可控硅元件。

(3)3CT5/600表示通态平均电流5安,正、反向重复峰值电压600伏的旧型号普通可控硅元件。

可控硅元件—可控硅元件的工作原理及基本特性

三、可控硅元件的工作原理及基本特性

1、工作原理

可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示

图1可控硅等效图解图

当阳极A加上正向电压时,BG1和BG2管均处于放大状态。

此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。

因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。

此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。

这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。

由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。

由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1

表1可控硅导通和关断条件

状态

条件

说明

从关断到导通

1、阳极电位高于是阴极电位

2、控制极有足够的正向电压和电流

两者缺一不可

维持导通

1、阳极电位高于阴极电位

2、阳极电流大于维持电流

两者缺一不可

从导通到关断

1、阳极电位低于阴极电位

2、阳极电流小于维持电流

任一条件即可

2、基本伏安特性

可控硅的基本伏安特性见图2

图2可控硅基本伏安特性

(1)反向特性

当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。

此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。

此时,可控硅会发生永久性反向击穿。

图3阳极加反向电压

(2)正向特性

当控制极开路,阳极上加上正向电压时(见图4),J1、J3结正偏,但J2结反偏,这与普通PN结的反向特性相似,也只能流过很小电流,这叫正向阻断状态,当电压增加,图3的特性发生了弯曲,如特性OA段所示,弯曲处的是UBO叫:

正向转折电压

图4阳极加正向电压

由于电压升高到J2结的雪崩击穿电压后,J2结发生雪崩倍增效应,在结区产生大量的电子和空穴,电子时入N1区,空穴时入P2区。

进入N1区的电子与由P1区通过J1结注入N1区的空穴复合,同样,进入P2区的空穴与由N2区通过J3结注入P2区的电子复合,雪崩击穿,进入N1区的电子与进入P2区的空穴各自不能全部复合掉,这样,在N1区就有电子积累,在P2区就有空穴积累,结果使P2区的电位升高,N1区的电位下降,J2结变成正偏,只要电流稍增加,电压便迅速下降,出现所谓负阻特性,见图3的虚线AB段。

这时J1、J2、J3三个结均处于正偏,可控硅便进入正向导电状态---通态,此时,它的特性与普通的PN结正向特性相似,见图2中的BC段

3、触发导通

在控制极G上加入正向电压时(见图5)因J3正偏,P2区的空穴时入N2区,N2区的电子进入P2区,形成触发电流IGT。

在可控硅的内部正反馈作用(见图2)的基础上,加上IGT的作用,使可控硅提前导通,导致图3的伏安特性OA段左移,IGT越大,特性左移越快。

图5阳极和控制极均加正向电压

可控硅元件—可控硅整流电路

一、单相半波可控整流电路

1、工作原理

电路和波形如图1所示,设u2=U2sinω。

图1单相半波可控整流

正半周:

0<t<t1,ug=0,T正向阻断,id=0,uT=u2,ud=0

t=t时,加入ug脉冲,T导通,忽略其正向压降,uT=0,ud=u2,id=ud/Rd。

负半周:

π≤t<2π当u2自然过零时,T自行关断而处于反向阻断状态,ut=0,ud=0,id=0。

从0到t1的电度角为α,叫控制角。

从t1到π的电度角为θ,叫导通角,显然α+θ=π。

当α=0,θ=180度时,可控硅全导通,与不控整流一样,当α=180度,θ=0度时,可控硅全关断,输出电压为零。

2、各电量关系

ud波形为非正弦波,其平均值(直流电压):

由上式可见,负载电阻Rd上的直流电压是控制角α的函数,所以改变α的大小就可以控制直流电压Ud的数值,这就是可控整流意义之所在。

流过Rd的直流电流Id:

Ud的有效值(均方根值):

流过Rd的电流有效值:

由于电源提供的有功功率P=UI,电源视在功率S=U2I(U2是电源电压有效值),所以功率因数:

由上式可见,功率因数cosψ也是α的函数,当α=0时,cosψ=0.707。

显然,对于电阻性负载,单相半波可控整流的功率因数也不会是1。

比值Ud/U、I/Id和cosψ随α的变化数值,见表1,它们相应的关系曲线,如图2所示

表1Ud/U、I/Id和cosψ的关系

α

30°

60°

90°

120°

150°

180°

Ud/U

0.45

0.42

0.338

0.225

0.113

0.03

0

I/Id

1.57

1.66

1.88

2.22

2.87

3.99

-

cosψ

0.707

0.698

0.635

0.508

0.302

0.12

0

图2单相半波可控整流的电压、电流及功率因数与控制角的关系

由于可控硅T与Rd是串联的,所以,流过Rd的有效值电流I与平均值电流Id的比值,也就是流过可控硅T的有效值电流IT与平均值电流IdT的比值,即I/Id=It/IdT。

二、单相桥式半控整流电路

1、工作原理

电路与波形如图3所示

图3、单相桥式半控整流

正半周:

t1时刻加入ug1,T1导通,电流通路如图实线所示。

uT1=0,ud=u2,uT2=-u2。

u2过零时,T1自行关断。

负半周:

t2时刻加入ug2,T2导通,电流通路如图虚线所示,uT2=0,ud=-u2,ut1=u2。

u2过零时T2自行关断。

2、各电量关系

由图3可见,ud波形为非正弦波,其幅值为半波整流的两倍,所以Rd上的直流电压Ud:

直流电流Id:

电压有效值U:

电流有效值I:

功率因数cosψ:

比值Ud/U,I/Id和cosψ随α的变化数值见表2,相应关系曲线见图4

表2Ud/U、I/Id、cosψ与α的关系表

α

30°

60°

90°

120°

150°

180°

Ud/U

0.9

0.84

0.676

0.45

0.226

0.06

0

I/Id

1.112

1.179

1.335

1.575

1.97

2.835

-

cosψ

1

0.985

0.896

0.717

0.426

0.169

0

图4、单相全波和桥式电路电压、电流及功率因数与控制角的关系

把单相全波整流单相半波整流进行比较可知:

(1)当α相同时,全波的输出直流电压比半波的大一倍。

(2)在α和Id相同时,全波的电流有效值比半波的减小倍。

(3)α相同时,全波的功率因数比半波的提高了倍。

三、整流电路波形分析

1、单相半波可控整流

(1)电阻性负载(见图1)

∙电阻性负载,id波形与ud波形相似,因为可控硅T与负载电阻Rd串联,所以id=id。

∙可控硅T承受的正向电压随控制角α而变化,但它承受的反向电压总是负半波电压,负半波电压的最大值为U2。

∙线路简单,多用在要求不高的电阻负载的场合。

(2)感性负载(不带续流二极管,见图5):

图5电感性负载无续流二极管

∙电机电器的电磁线圈、带电感滤波的电阻负载等均属于电感性负载。

∙电感具有障碍电流变化的作用可控硅T导通时,其压降uT=0,但电流id只能从零开始上升。

id增加和减少时线圈Ld两端的感应电动势eL的极性变化如图示。

∙当电源电压u2下降及u2≥0时,只要释放磁场能量可以维持id继续流通,可控硅T仍然牌导通状态,此时ud=u2。

当u2<0时,虽然ud出现负值,但电流id的方向不变。

∙当电流id减小到小于维持电流IH时,可控硅T自行关断,id=0,UT=u2,可控硅承受反压。

∙负载电压平均值:

其中电感Ld两端电压的平均值为零。

∙电感Ld的存在使负载电压ud出现负值,Ld越大,ud负值越大,负载上直流电压Ud就越小,Id=Ud/Rd也越小,所以如果不采取措施,可控硅的输出就达不到应有的电压和电流。

(3)感性负载(带续流二极管,见图6):

图6电感性负载有续流二极管

∙在负载上并联一只续流二极管D,可使Ud提高到和电阻性负载时一样,

∙在电源电压u2≤0时,D的作用有点:

①把电源负电压u2引到可控硅T两端,使T关断,uT=u2;②给电感电流续流,形成iD;③把负载短路,ud=0,避免ud出现负值,使负载上直流输出电压ud提高。

∙负载电流为何控硅电流iT和二极管的续流iD之和,即id=iT+iD。

当ωLd≥R时,iD下降很慢使id近似为一条水平线,所以流过T和D的电注平均值与有效值分别为:

平均值:

IdT=(θ/360°)Id;IdD=[(360°-θ)/360°]Id;有效值:

I

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1