四年级奥数教程.docx

上传人:b****6 文档编号:5396250 上传时间:2022-12-15 格式:DOCX 页数:11 大小:22.74KB
下载 相关 举报
四年级奥数教程.docx_第1页
第1页 / 共11页
四年级奥数教程.docx_第2页
第2页 / 共11页
四年级奥数教程.docx_第3页
第3页 / 共11页
四年级奥数教程.docx_第4页
第4页 / 共11页
四年级奥数教程.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

四年级奥数教程.docx

《四年级奥数教程.docx》由会员分享,可在线阅读,更多相关《四年级奥数教程.docx(11页珍藏版)》请在冰豆网上搜索。

四年级奥数教程.docx

四年级奥数教程

四年级奥数教程

王梓梦:

奥数基础教程

例1四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:

解:

选基准数为450,则

-1-

累计差=12+30-7-30+23-21+18-11+25+11=50,

平均每块产量=450+50÷10=455(千克)。

答:

平均每块麦田的产量为455千克。

求一位数的平方,在乘法口诀的小学奥数基础教程(四年级)

第1讲速算与巧算

(一)86,78,77,83,91,74,92,第2讲速算与巧算

(二)69,84,75。

第3讲高斯求和求这10名同学的总分。

第4讲4,8,9整除的数的特征分析与解:

通常的做法是将这10个数第5讲弃九法直接相加,但这些数杂乱无章,直接第6讲数的整除性

(二)相加既繁且易错。

观察这些数不难发第7讲找规律

(一)第8讲找规律

(二)第9讲数字谜

(一)第10讲数字谜

(二)第11讲归一问题与归总问题第12讲年龄问题

第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法

(一)第15讲盈亏问题与比较法

(二)第16讲数阵图

(一)第17讲数阵图

(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理

(一)第21讲加法原理

(二)第22讲还原问题

(一)第23讲还原问题

(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题

(一)第27讲逻辑问题

(二)第28讲最不利原则第29讲抽屉原理

(一)第30讲抽屉原理

(二)

第1讲速算与巧算

(一)

计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:

6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到

总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:

通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

例1所用的方法叫做加法的基准数法。

这种方法适用于加数较多,而且所有的加数相差不大的情况。

作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。

由例1得到:

总和数=基准数×加数的个数+累计差,

平均数=基准数+累计差÷加数的个数。

在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。

同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。

例2某农场有10块麦田,每块的产量如下(单位:

千克):

462,480,443,420,473,429,468,439,475,461。

求平均每块麦田的产量。

九九表中已经被同学们熟知,如7×7=49(七七四十九)。

对于两位数的平方,大多数同学只是背熟了10~20的平方,而21~99的平方就不大熟悉了。

有没有什么窍门,能够迅速算出两位数的平方呢?

这里向同学们介绍一种方法——凑整补零法。

所谓凑整补零法,就是用所求数与最接近的整十数的差,通过移多补少,将所求数转化成一个整十数乘以另一数,再加上零头的平方数。

下面通过例题来说明这一方法。

例3求292

和822

的值。

解:

292

=29×29

=(29+1)×(29-1)+12=30×28+1=840+1=841。

822=82×82

=(82-2)×(82+2)+22

=80×84+4=6720+4=6724。

由上例看出,因为29比30少1,所以给29“补”1,这叫“补少”;因为82比80多2,所以从82中“移走”2,这叫“移多”。

因为是两个相同数相乘,所以对其中一个数“移多补少”后,还需要在另一个数上“找齐”。

本例中,给一个29补1,就要给另一个29减1;给一个82减了2,就要给另一个82加上2。

最后,还要加上“移多补少”的数的平方。

由凑整补零法计算352

,得35×35=40×30+52=1225。

这与三年级学的个位数是5的数的平方的速算方法结果相同。

这种方法不仅适用于求两位数的平方值,也适用于求三位数或更多位数的平方值。

例4求9932

和20042

的值。

解:

9932

=993×993

=(993+7)×(993-7)+72

=1000×986+49=986000+49=986049。

20042

=2004×2004

=(2004-4)×(2004+4)+42=2000×2008+16=4016000+16=4016016。

下面,我们介绍一类特殊情况的乘法的速算方法。

请看下面的算式:

66×46,73×88,19×44。

这几道算式具有一个共同特点,两个因数都是两位数,一个因数的十位数与个位数相同,另一因数的十位数与个位数之和为10。

这类算式有非常简便的速算方法。

例588×64=?

分析与解:

由乘法分配律和结合律,得到88×64

=(80+8)×(60+4)=(80+8)×60+(80+8)×4=80×60+8×60+80×4+8×4=80×60+80×6+80×4+8×4=80×(60+6+4)+8×4=80×(60+10)+8×4=8×(6+1)×100+8×4。

于是,我们得到下面的速算式:

由上式看出,积的末两位数是两个因数的个位数之积,本例为8×4;积中从百位起前面的数是“个位与十位相同的因数”的十位数与“个位与十位之和为10的因数”的十位数加1的乘积,本例为8×(6+1)。

例677×91=?

解:

由例3的解法得到

王梓梦:

奥数基础教程

由上式看出,当两个因数的个位数之积是一位数时,应在十位上补一个0,本例为7×1=07。

用这种速算法只需口算就可以方便地解答出这类两位数的乘法计算。

练习1

1.求下面10个数的总和:

165,152,168,171,148,156,169,161,157,149。

2.农业科研小组测定麦苗的生长情况,量出12株麦苗的高度分别为(单位:

厘米):

26,25,25,23,27,28,26,24,29,27,27,25。

求这批麦苗的平均高度。

3.某车间有9个工人加工零件,他们加工零件的个数分别为:

68,91,84,75,78,81,83,72,79。

他们共加工了多少个零件?

4.计算:

13+16+10+11+17+12+15+12+16+13+12。

5.计算下列各题:

(1)372

(2)532

;(3)912;(4)682

(5)1082

;(6)3972

6.计算下列各题:

(1)77×28;

(2)66×55;(3)33×19;(4)82×44;(5)37×33;(6)46×99。

练习1答案

1.1596。

2.26厘米。

3.711个。

4.147。

5.

(1)1369;

(2)2809;(3)8281;

(4)4624;(5)11664;(6)157609。

6.

(1)2156;

(2)3630;(3)627;

(4)3608;(5)1221;(6)4554。

第2讲速算与巧算

(二)

-2-

上一讲我们介绍了一类两位数乘法的速算方法,这一讲讨论乘法的“同补”与“补同”速算法。

两个数之和等于10,则称这两个数互补。

在整数乘法运算中,常会遇到像72×78,26×86等被乘数与乘数的十位数字相同或互补,或被乘数与乘数的个位数字相同或互补的情况。

72×78的被乘数与乘数的十位数字相同、个位数字互补,这类式子我们称为“头相同、尾互补”型;26×86的被乘数与乘数的十位数字互补、个位数字相同,这类式子我们称为“头互补、尾相同”型。

计算这两类题目,有非常简捷的速算方法,分别称为“同补”速算法和“补同”速算法。

例1

(1)76×74=?

(2)31×39=?

分析与解:

本例两题都是“头相同、尾互补”类型。

(1)由乘法分配律和结合律,得到76×74

=(7+6)×(70+4)

=(70+6)×70+(7+6)×4=70×70+6×70+70×4+6×4=70×(70+6+4)+6×4=70×(70+10)+6×4

=7×(7+1)×100+6×4。

于是,我们得到下面的速算式:

(2)与

(1)类似可得到下面的速算式:

由例1看出,在“头相同、尾互补”的两个两位数乘法中,积的末两位数是两个因数的个位数之积(不够两位时前面补0,如1×9=09),积中从百位起前面的数是被乘数(或乘数)的十位数与十位数加1的乘积。

“同补”速算法简单地说就是:

积的末两位是“尾×尾”,前面是“头×(头+1)”。

我们在三年级时学到的15×15,25×25,…,95×95的速算,实际上就是“同补”速算法。

例2

(1)78×38=?

(2)43×63=?

分析与解:

本例两题都是“头互补、尾相同”类型。

(1)由乘法分配律和结合律,得到78×38

=(70+8)×(30+8)=(70+8)×30+(70+8)×8=70×30+8×30+70×8+8×8=70×30+8×(30+70)+8×8=7×3×100+8×100+8×8=(7×3+8)×100+8×8。

于是,我们得到下面的速算式:

(2)与

(1)类似可得到下面的速算式:

由例2看出,在“头互补、尾相同”的两个两位数乘法中,积的末两位数是两个因数的个位数之积(不够两位时前面补0,如3×3=09),积中从百位起前面的数是两个因数的十位数之积加上被乘数(或乘数)的个位数。

“补同”速算法简单地说就是:

积的末两位数是“尾×尾”,前面是“头×头+尾”。

例1和例2介绍了两位数乘以两位数的“同补”或“补同”形式的速算法。

当被乘数和乘数多于两位时,情况会发生什么变化呢?

我们先将互补的概念推广一下。

当两个数的和是10,100,1000,…时,这两个数互为补数,简称互补。

如43与57互补,99与1互补,555与445互补。

王梓梦:

奥数基础教程

在一个乘法算式中,当被乘数与乘数前面的几位数相同,后面的几位数互补时,这个算式就是“同补”型,即“头相同,尾互补”型。

例如

,因为被乘数与乘

数的前两位数相同,都是70,后两位数互补,77+23=100,所以是“同补”型

如,

等都是“同补”型。

当被乘数与乘数前面的几位数互补,后面的几位数相同时,这个乘法算式就是“补同”型,即“头互补,尾相同”型。

例如,

等都是

“补同”型。

在计算多位数的“同补”型乘法时,例1的方法仍然适用。

例3

(1)702×708=?

(2)1708×

1792=?

解:

(1)

(2)

计算多位数的“同补”型乘法时,将“头×(头+1)”作为乘积的前几位,将两个互补数之积作为乘积的后几位。

注意:

互补数如果是n位数,则应占乘积的后2n位,不足的位补“0”。

在计算多位数的“补同”型乘法时,如果“补”与“同”,即“头”与“尾”的位数相同,那么例2的方法仍然适用(见例4);如果“补”与“同”的位数不相同,那么例2的方法不再适用,因为没有简捷实用的方法,所以就不再讨论了。

-3-

例42865×7265=?

解:

练习2

计算下列各题:

1.68×62;2.93×97;3.27×87;4.79×39;5.42×62;6.603×607;

7.693×607;8.4085×6085。

第3讲高斯求和

德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:

1+2+3+4+…+99+100=?

老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。

高斯为什么算得又快又准呢?

原来小高斯通过细心观察发现:

1+100=2+99=3+98=…=49+52=50+51。

1~100正好可以分成这样的50

对数,每对数的和都相等。

于是,小高斯把这道题巧算为

(1+100)×100÷2=5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。

项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。

例如:

(1)1,2,3,4,5,…,100;

(2)1,3,5,7,9,…,99;(3)8,15,22,29,36,…,71。

其中

(1)是首项为1,末项为100,公差为1的等差数列;

(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。

由高斯的巧算方法,得到等差数列的求和公式:

和=(首项+末项)×项数÷2。

例11+2+3+…+1999=?

分析与解:

这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。

由等差数列求和公式可得

原式=(1+1999)×1999÷2=1999000。

注意:

利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。

例211+12+13+…+31=?

分析与解:

这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。

原式=(11+31)×21÷2=441。

在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。

根据首项、末项、公差的关系,可以得到

项数=(末项-首项)÷公差+1,末项=首项+公差×(项数-1)。

例33+7+11+…+99=?

分析与解:

3,7,11,…,99是公差为4的等差数列,

项数=(99-3)÷4+1=25,原式=(3+99)×25÷2=1275。

例4求首项是25,公差是3的等差数列的前40项的和。

解:

末项=25+3×(40-1)=142,和=(25+142)×40÷2=3340。

利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。

例5在下图中,每个最小的等边三角形的面积是12厘米2,边长是1根火柴棍。

问:

(1)最大三角形的面积是多少平方厘米?

(2)整个图形由多少根火柴棍摆成?

分析:

最大三角形共有8层,从上往下摆时,每层的小三角形数目及所用火柴数目如下表:

王梓梦:

奥数基础教程

由上表看出,各层的小三角形数成等差数列,各层的火柴数也成等差数列。

解:

(1)最大三角形面积为(1+3+5+…+15)×12=[(1+15)×8÷2]×12=768(厘米2)。

2)火柴棍的数目为3+6+9+…+24

=(3+24)×8÷2=108(根)。

答:

最大三角形的面积是768厘米2,整个图形由108根火柴摆成。

例6盒子里放有三只乒乓球,一位魔术师第一次从盒子里拿出一只球,将它变成3只球后放回盒子里;第二次又从盒子里拿出二只球,将每只球各变成3只球后放回盒子里……第十次从盒子里拿出十只球,将每只球各变成3只球后放回到盒子里。

这时盒子里共有多少只乒乓球?

分析与解:

一只球变成3只球,实际上多了2只球。

第一次多了2只球,第二次多了2×2只球……第十次多了2×10只球。

因此拿了十次后,多了2×1+2×2+…+2×10=2×(1+2+…+10)=2×55=110(只)。

加上原有的3只球,盒子里共有球110+3=113(只)。

综合列式为:

(3-1)×(1+2+…+10)+3=2×[(1+10)×10÷2]+3=113(只)。

练习3

1.计算下列各题:

(1)2+4+6+…+200;

(2)17+19+21+…+39;

(3)5+8+11+14+…+50;(4)3+10+17+24+…+101。

2.求首项是5,末项是93,公差

是4的等差数列的和。

3.求首项是13,公差是5的等差数列的前30项的和。

-4-

4.时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下。

问:

时钟一昼夜敲打多少次?

5.求100以内除以3余2的所有数的和。

6.在所有的两位数中,十位数比个位数大的数共有多少个?

第四讲

我们在三年级已经学习了能被2,3,5整除的数的特征,这一讲我们将讨论整除的性质,并讲解能被4,8,9整除的数的特征。

数的整除具有如下性质:

性质1如果甲数能被乙数整除,乙数能被丙数整除,那么甲数一定能被丙数整除。

例如,48能被16整除,16能被8整除,那么48一定能被8整除。

性质2如果两个数都能被一个自然数整除,那么这两个数的和与差也一定能被这个自然数整除。

例如,21与15都能被3整除,那么21+15及21-15都能被3整除。

性质3如果一个数能分别被两个互质的自然数整除,那么这个数一定能被这两个互质的自然数的乘积整除。

例如,126能被9整除,又能被7整除,且9与7互质,那么126能被9×7=63整除。

利用上面关于整除的性质,我们可以解决许多与整除有关的问题。

为了进一步学习数的整除性,我们把学过的和将要学习的一些整除的数字特征列出来:

(1)一个数的个位数字如果是0,2,4,6,8中的一个,那么这个数就能被2整除。

(2)一个数的个位数字如果是0或5,那么这个数就能被5整除。

(3)一个数各个数位上的数字之和如果能被3整除,那么这个数就能被3整除。

(4)一个数的末两位数如果能被4(或25)整除,那么这个数就能被4(或25)整除。

(5)一个数的末三位数如果能被8(或125)整除,那么这个数就能被8(或125)整除。

(6)一个数各个数位上的数字之和如果能被9整除,那么这个数就能被9整除。

其中

(1)

(2)(3)是三年级学过的内容,(4)(5)(6)是本讲要学习的内容。

因为100能被4(或25)整除,所以由整除的性质1知,整百的数都能被4(或25)整除。

因为任何自然数都能分成一个整百的数与这个数的后两位数之和,所以由整除的性质2知,只要这个数的后两位数能被4(或25)整除,这个数就能被4(或25)整除。

这就证明了(4)。

类似地可以证明(5)。

(6)的正确性,我们用一个具体的数来说明一般性的证明方法。

837=800+30+7=8×100+3×10+7

=8×(99+1)+3×(9+1)+7=8×99+8+3×9+3+7

=(8×99+3×9)+(8+3+7)。

因为99和9都能被9整除,所以根据整除的性质1和性质2知,(8x99+3x9)能被9整除。

再根据整除的性质2,由(8+3+7)能被9整除,就能判断837能被9整除。

利用(4)(5)(6)还可以求出一个数除以4,8,9的余数:

(4‘)一个数除以4的余数,与它的末两位除以4的余数相同。

(5')一个数除以8的余数,与它的末三位除以8的余数相同。

(6')一个数除以9的余数,与它的各位数字之和除以9的余数相同。

例1在下面的数中,哪些能被4整除?

哪些能被8整除?

哪些能被9整除?

234,789,7756,8865,3728.8064。

解:

能被4整除的数有7756,3728,8064;

能被8整除的数有3728,8064;能被9整除的数有234,8865,8064。

例2在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?

解:

如果56□2能被9整除,那么5+6+□+2=13+□

王梓梦:

奥数基础教程

应能被9整除,所以当十位数是5,即四位数是5652时能被9整除;如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5632或5672时能被8整除;

如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除。

到现在为止,我们已经学过能被2,3,5,4,8,9整除的数的特征。

根据整除的性质3,我们可以把判断整除的范围进一步扩大。

例如,判断一个数能否被6整除,因为6=2×3,2与3互质,所以如果这个数既能被2整除又能被3整除,那么根据整除的性质3,可判定这个数能被6整除。

同理,判断一个数能否被12整除,只需判断这个数能否同时被3和4整除;判断一个数能否被72整除,只需判断这个数能否同时被8和9整除;如此等等。

例3从0,2,5,7四个数字中任选三个,组成能同时被2,5,3整除的数,并将这些数从小到大进行排列。

解:

因为组成的三位数能同时被2,5整除,所以个位数字为0。

根据三位数能被3整除的特征,数字和2+7+0与5+7+0都能被3整除,因此所求的这些数为270,570,720,750。

例4五位数

能被72整除,

问:

A与B各代表什么数字?

分析与解:

已知

能被72整

除。

因为72=8×9,8和9是互质数,所以

既能被8整除,又能被

9整除。

根据能被8整除的数的特征,要求

能被8整除,由此可确定

B=6。

再根据能被9整除的数的特征,

的各位数字之和为

A+3+2+9+B=A+3-f-2+9+6=A+20,

-5-

因为l≤A≤9,所以21≤A+20≤29。

在这个范围内只有27能被9整除,所以A=7。

解答例4的关键是把72分解成8×9,再分别根据能被8和9整除的数的特征去讨论B和A所代表的数字。

在解题顺序上,应先确定B所代表的数字,因为B代表的数字不受A的取值大小的影响,一旦B代表的数字确定下来,A所代表的数字就容易确定了。

例5六位数

是6的倍数,

这样的六位数有多少个?

分析与解:

因为6=2×3,且2与3互质,所以这个整数既能被2整除又能被3整除。

由六位数能被2整除,推知A可取0,2,4,6,8这五个值。

再由六位数能被3整除,推知3+A+B+A+B+A=3+3A+2B能被3整除,故2B能被3整除。

B可取0,3,6,9这4个值。

由于B可以取4个值,A可以取5个值,题目没有要求A≠B,所以符合条件的六位数共有5×4=20(个)。

例6要使六位数

能被36整

除,而且所得的商最小,问A,B,C各代表什么数字?

分析与解:

因为36=4×9,且4与9互质,所以这个六位数应既能被4整除又能被9整除。

六位数

能被4整除,就要

能被4整除,

因此C可取1,3,5,7,9。

要使所得的商最小,就要使

这个六位数尽可能小。

因此

首先是A尽量小,其次是B尽量小,最后是C尽量小。

先试取A=0。

六位数

的各位数字之和为12+B

+C。

它应能被9整除,因此B+C=6或B+C=15。

因为B,C应尽量小,所以B+C=6,而C只能取1,3,5,7,9,所以要使尽

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1