基于AT89C51单片机倒车防撞系统的设计毕业设计.docx

上传人:b****5 文档编号:5367009 上传时间:2022-12-15 格式:DOCX 页数:36 大小:363.79KB
下载 相关 举报
基于AT89C51单片机倒车防撞系统的设计毕业设计.docx_第1页
第1页 / 共36页
基于AT89C51单片机倒车防撞系统的设计毕业设计.docx_第2页
第2页 / 共36页
基于AT89C51单片机倒车防撞系统的设计毕业设计.docx_第3页
第3页 / 共36页
基于AT89C51单片机倒车防撞系统的设计毕业设计.docx_第4页
第4页 / 共36页
基于AT89C51单片机倒车防撞系统的设计毕业设计.docx_第5页
第5页 / 共36页
点击查看更多>>
下载资源
资源描述

基于AT89C51单片机倒车防撞系统的设计毕业设计.docx

《基于AT89C51单片机倒车防撞系统的设计毕业设计.docx》由会员分享,可在线阅读,更多相关《基于AT89C51单片机倒车防撞系统的设计毕业设计.docx(36页珍藏版)》请在冰豆网上搜索。

基于AT89C51单片机倒车防撞系统的设计毕业设计.docx

基于AT89C51单片机倒车防撞系统的设计毕业设计

摘要

随着社会经济的发展交通运输业日益兴旺,汽车的数量在大副攀升。

交通拥挤状况也日趋严重,撞车事件屡屡发生,造成了不可避免的人身伤亡和经济损失,针对这种情况,设计一种响应快,可靠性高且较为经济的汽车防撞预警系统势在必行,超声波测距法是最常见的一种距离测距方法,本文介绍的就是利用超声波测距法设计的一种倒车防撞报警系统。

论文的内容是基于AT89C51单片机倒车防撞系统的设计,主要是利用超声波的特点和优势,将超声波测距系统和AT89C51单片机结合于一体,设计出一种基于AT89C51单片机的倒车防撞报警系统。

该系统采用软、硬件结合的方法,具有模块化和多用化的特点。

论文概述了超声波检测的发展及基本原理,阐述了超声波传感器的原理及特性。

对于系统的一些主要参数进行了讨论,并且在介绍超声波测距系统功能的基础上,提出了系统的总体构成。

通过多种发射接收电路设计方案比较,得出了最佳设计方案,并对系统各个设计单元的原理进行了介绍。

对组成各系统电路的芯片进行了介绍,并阐述了它们的工作原理。

论文介绍了系统的软件结构,通过编程来实现系统功能。

最后,通过对系统的误差分析,给出了系统的改进方案。

关键字:

单片机,超声波,AT89C51

第1章绪论

随着社会经济的发展,交通运输业日益兴旺,汽车的数量在大副攀升。

交通拥挤状况也日趋严重,撞车事件屡屡发生,造成了不可避免的人身伤亡和经济损失,针对这种情况,设计一种响应快,可靠性高且较为经济的汽车防撞报警系统势在必行,超声波测距法是最常见的一种距离测距方法,应用于汽车停车的前后左右防撞的近距离,低速状况,以及在汽车倒车防撞报警系统中,超声波作为一种特殊的声波,同样具有声波传输的基本物理特性——折射,反射,干涉,衍射,散射。

超声波测距即是利用其反射特性,当车辆后退时,超声波距离传感器利用超声波检测车辆后方的障碍物位置,并利用指示灯及蜂鸣器把车辆到障碍物的距离及位置通知驾驶人员,起到安全的作用。

1.1超声波检测发展综述

高速度,高效率是现代工业的标志,而这是建立在高质量的基础之上的。

设计和工艺人员理应了解:

非均一的组织结构,随机出现的微观,宏观缺陷,常常可以有时甚至是只能依靠无损检测技术的运用方可予以发现,评价。

当然,这与数十年来多方的重视和广大从业人员的艰辛努力,使无损检测技术在这方面已具有一定的能力有关。

现在,在工业发达国家,无损检测在产品的设计,研制,使用部门已被卓有成效的运用,1981年美国前总统里根在给美国无损检测学会成立40周年大会的贺信中就说过:

“你们能够给飞机和空间飞行器,发电厂,船舶,汽车和建筑物等带来更大程度的可靠性。

没有无损检测,我们就不可能享有目前在这些领域和其他领域的领先地位。

”无损检测正在以迅猛之势向纵深发展,客观的需要毕竟是一种专业可以发展的最大动力。

我国无损检测技术是从无到有,从低级阶段逐渐发展到应用普及的现阶段水平。

超声波检测仪器的研制生产,也大致按此规律发展变化。

超声波检测技术是我国重点发展和推广的新技术,其具有高精度,无损,非接触等优点。

目前,已经广泛地应用在机械制造,电子冶金,航海,宇航,石油化工,交通等工业领域。

此外,在材料科学,医学,生物科学等领域中也占具重要地位。

国外在提高超声波测距方面做了大量研究,国内一些学者也做了相关研究。

对超声波测距精度主要取决于所测的超声波传播时间和超声波在介质中的传播速度,二者中以传播时间的精度影响较大,所以大部分文献采用降低传播时间的不确定度来提高测距精度。

目前,相位探测法和声谱轮廓分析法或二者结合起来的方法是主要的降低探测传输不确定度的方法。

超声波检测技术作为无损检测技术的重要手段之一,在其发展过程中起着重要的作用,它提供了评价固体材料的微观组织及相关力学性能、检测其微观和宏观不连续性的有效通用方法。

由于其信号的高频特性,超声波检测早期仅使用模拟量信号的分析,大部分检测设备仅有A扫描形式,需要通过有经验的无损检测人员对信号进行人工分析才能得出正确的结论,对检测和分析人员的要求较高,因此,人为因素对检测的结果影响较大,波形也不易记录和保存,不适宜完成自动化检测。

目前国内外在超声波检测领域都向着数字化方向发展,数字式超声波检测仪器的发展速度很快。

国内近几年也相继出现了许多数字式超声波仪器和分析系统。

国际上对超声波检测数字化技术的研究非常重视,国外生产类似产品和研究的公司有美国的泛美(PANAMETRICS)公司、METEC公司,加拿大的R/DTECH公司,德国的K-K公司、法国的SOFRATEST公司和西班牙的TECNATOM公司等等,上述这些公司生产的超声波检测采集、分析和成像处理系统的技术水平较高,在世界上处于领先水平。

随着检测技术研究的不断深入,对超声检测仪器的功能要求越来越高,单数码显示的超声检测仪测读会带来较大的测试误差。

进一步要求以后生产的超声仪能够具有双显及内带有单板机的微处理功能。

随后具有检测,记录,存储,数据处理与分析等多项功能的智能化检测分析仪相继研制成功。

超声仪研制呈现一派繁荣景象。

其中,煤炭科学研究院研制的2000A型超声分析检测仪,是一种内带微处理器的智能化测量仪器,全部操作都处于微处理器的控制管理之下,所有测量值,处理结果,状态信息都在显像管上显示出来,并可接微型打印机打印。

其数字和波形都比较清晰稳定,操作简单,可靠性高,具有断电存储功能,其串口可以方便用户对仪器的测试数据进行后处理及有关程序的开发。

与国内同类产品相比,设计新颖合理,功能齐全,在仪器设计上有重大突破和创新,达到了国际先进水平。

目前,计算机市场价格大幅度下降,采用非一体化超声波检测仪器,计算机可发挥它一机多用的各种功能,实际上是最大的节约。

过去那种全功能的仪器设置,还不如单独的超声仪,计算机可充分发挥各自特点。

高智能化检测仪器只能满足检测条件,使用环境,重复性测试内容等基本情况一样,才可充分发挥其特有功能。

仪器设计也应从实际情况出发,才能满足用户的要求。

综上所述,我国超声波仪器的研制与生产,有较大发展,有的型号已超过国外同类仪器水平。

1.2本论文的主要内容,章节安排

本论文第一章绪论部分主要介绍了超声波的发展状况,以及目前的现状和前景。

第二章超声波测距原理主要介绍了超声波传感器,超声波传感器的特性,传感器的检测概述和超声波测距的原理及实现。

第三章单片机倒车防撞报警系统总体构想主要介绍了超声测距系统的总体方案,系统主要参数考虑和超声测距系统的总体构成。

第四章超声波测距系统各组成单元方案设计(包括发射接收电路设计、显示电路设计、报警电路设计、晶振电路设计、复位电路设计等)。

并详细介绍了最终确定的各单元设计方案以及最终方案的设计原理。

第五章系统硬件软件实现部分主要介绍了各模块中的硬件部分以及软件的实现。

第六章给出系统的误差分析和系统改进。

第2章超声波测距原理

2.1超声波传感器介绍

超声波由于其指向性强、能量消耗缓慢、传播距离较远等优点,而经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。

超声波测距主要应用于倒车雷达、建筑施工工地以及一些工业现场,例如液位、井深、管道长度等场合。

利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在测控系统的研制上得到了广泛应用。

超声传感器是一种将其他形式的能转变为所需频率的超声能或是把超声能转变为同频率的其他形式的能的器件。

目前常用的超声传感器有两大类,即电声型与流体动力型。

电声型主要有:

1压电传感器;2磁致伸缩传感器;3静电传感器。

流体动力型中包括有气体与液体两种类型的哨笛。

由于工作频率与应用目的不同,超声传感器的结构形式是多种多样的,并且名称也有不同。

压电传感器属于超声传感器中电声型的一种。

探头由压电晶片、楔块、接头等组成,是超声检测中最常用的实现电能和声能相互转换的一种传感器件,是超声波检测装置的重要组成部分。

压电材料分为晶体和压电陶瓷两类。

属于晶体的如石英,铌酸锂等,属于压电陶瓷的有锆钛酸铅,钛酸钡等。

其具有下列的特性:

把这种材料置于电场之中,它就产生一定的应变;相反,对这种材料施以外力,则由于产生了应变就会在其内部产生一定方向的电场。

所以,只要对这种材料加以交变电场,它就会产生交变的应变,从而产生超声振动。

因此,用这种材料可以制成超声传感器。

如图2-1是超声波传感器的的结构图。

主要组成部分是压电晶片,当压电晶片受发射电脉冲激励后产生振动,即可发射声脉冲,是逆压电效应。

当超声波作用于晶片时,晶片受迫振动引起的形变可转换成相应的电信号,是正压电效应。

前者用于超声波的发射,后者即为超声波的接收。

超声波传感器一般采用双压电陶瓷晶片制成。

这种超声传感器需要的压电材料较少,价格低廉,且非常适用于气体和液体介质中在压电陶瓷上加有大小和方向不断变化的交流电压时,根据压电效应,就会使压电陶瓷晶片产生机械变形,这种机械变形的大小和方向在一定范围内是与外加电压的大小和方向成正比的。

也就是说,在压电陶瓷晶片上加有频率为f0交流电压,它就会产生同频率的机械振动,这种机械振动推动空气等媒介,便会发出超声波。

如果在压电陶瓷晶片上有超声机械波作用,这将会使其产生机械变形,这种机械变形是与超声机械波一致的,机械变形使压电陶瓷晶片产生频率与超声机械波相同的电信号。

图2-1压电式超声波传感器结构图

压电式超声波发生器实际上是利用压电晶体的谐振来工作的,超声波发生器内部结构如图2.1所示,它有两个压电晶片和一个共振板,当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。

反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转化为电信号,这时它就成为超声波传感器。

压电陶瓷晶片有一个固定的谐振频率,即中心频率f0。

发射超声波时,加在其上面的交变电压的频率要与它的固有谐振频率一致。

这样,超声传感器才有较高的灵敏度。

当所用压电材料不变时,改变压电陶瓷晶片的几何尺寸,就可非常方便的改变其固有谐振频率。

利用这一特性可制成各种频率的超声传感器。

超声波传感器的内部结构由压电陶瓷晶片、锥形辐射喇叭、底座、引线、金属壳及金属网构成,其中,压电陶瓷晶片是传感器的核心,锥形辐射喇叭使发射和接收超声波能量集中,并使传感器有一定的指向角,金属壳可防止外界力量对压电陶瓷晶片及锥形辐射喇叭的损坏。

金属网也是起保护作用的,但不影响发射与接收超声波。

2.2超声波传感器的特性

超声波传感器的基本特性有频率特性和指向特性,这里以SZW-S40-12M发射型超声波传感器为例进行说明。

一、频率特性

图2-2超声发射传感器频率特性

图2-2是超声波发射传感器的频率特性曲线。

其中,f0=40KHz为超声发射传感器的中心频率,在f0处,超声发射传感器所产生的超声机械波最强,也就是说在f0处所产生的超声声压能级最高。

而在f0两侧,声压能级迅速衰减。

因此,超声波发射传感器一定要使用非常接近中心频率f0的交流电压来激励。

另外,超声波接收传感器的频率特性与发射传感器的频率特性类似。

曲线在f0处曲线最尖锐,输出电信号的幅度最大,即在f0处接收灵敏度最高。

因此,超声波接收传感器具有很好的频率选择特性。

超声接收传感器的频率特性曲线和输出端外接电阻R也有很大关系,如果R很大,频率特性是尖锐共振的,并且在这个共振频率上灵敏度很高。

如果R较小,频率特性变得光滑而具有较宽得带宽,同时灵敏度也随之降低。

并且最大灵敏度向稍低的频率移动。

因此,超声接收传感器应与输入阻抗高的前置放大器配合使用,才能有较高得接收灵敏度。

二、指向特性

实际的超声波传感器中的压电晶片是一个小圆片,可以把表面上每个点看成一个振荡源,辐射出一个半球面波(子波),这些子波没有指向性。

但离开超声传感器的空间某一点的声压是这些子波迭加的结果(衍射),却有指向性。

2.3超声波测距的原理及实现

超声测距从原理上可分为共振式、脉冲反射式两种。

由于应用要求限定,在这里使用脉冲反射式,即利用超声的反射特性。

超声波测距原理是通过超声波发射传感器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就停止计时。

常温下超声波在空气中的传播速度为C=340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(S),即:

S=C*t/2=C*t0(2-1)

其中,t0就是所谓的渡越时间。

可以看出主要部分有:

(1)供应电能的脉冲发生器(发射电路);

(2)使接收和发射隔离的开关部分;

(3)转换电能为声能,且将声能透射到介质中的发射传感器;

(4)接收反射声能(回波)和转换声能为电信号的接收传感器;

(5)接收放大器,可以使微弱的回声放大到一定幅度,并使回声激发记录设备;

(6)记录/控制设备,通常控制发射到传感器中的电能,并控制声能脉冲发射到记录回波的时间,存储所要求的数据,并将时间间隔转换成距离。

在超声波测量系统中,频率取得太低,外界的杂音干扰较多;频率取得太高,在传播的过程中衰减较大。

故在超声波测量中,常使用40KHz的超声波。

目前超声波测量的距离一般为几米到几十米,是一种适合室内测量的方式。

由于超声波发射与接收器件具有固有的频率特性,具有很高的抗干扰性能。

距离测量系统常用的频率范围为25KHz~300KHz的脉冲压力波,发射和接收的传感器有时共用一个,或者两个是分开使用的。

发射电路一般由振荡和功放两部分组成,负责向传感器输出一个有一定宽度的高压脉冲串,并由传感器转换成声能发射出去;接收放大器用于放大回声信号以便记录,同时为了使它能接收具有一定频带宽度的短脉冲信号,接收放大器要有足够的频带宽度;收/发隔离则使接收装置避开强大的发射信号;记录/控制部分启动或关闭发射电路并记录发射的瞬时及接收的瞬时,并将时差换算成距离读数并加以显示或记录。

 

第3章单片机超声波测距构想

该超声测距系统的应用背景是基于DSP的超声信号检测中的先期部分。

因此初步计划是在室内小范围的测距,限定在4米之内。

本章从整体结构角度讨论了测距系统的组成及一些系统主要参数。

3.1超声波测距系统的总体方案

系统的设计及器件的选择也正是在这个基础上进行的,系统结构如图3-1所示。

图3-1超声波测距硬件电路图

电子市场上常见的超声探头是收发分体式,一般频率为40KHz。

如果需要更高频率的超声探头,比如几百赫兹或者几兆赫兹的频率,就需要到专业经营超声产品的厂商去购买或者定制。

发射电路通常有调谐式和非调谐式。

在调谐式电路中有调谐线圈(有时装在探头内),谐振频率由调谐电路的电感、电容决定,发射出的超声脉冲频带较窄。

在非调谐式电路中没有调谐元件,发射出的超声频率主要由压电晶片的固有参数决定,频带较宽。

为了将一定频率、幅度的交流电压加到发射传感器的两端,使其振动发出超声。

电路频率的选择应该满足发射传感器的固有频率40KHz,这样才能使其工作在谐振频率,达到最优的特性。

发射电压从理论上说是越高越好,因为对同一支发射传感器而言,电压越高,发射的超声功率就越大,这样能够在接收传感器上接收的回波功率就比较大,对于接收电路的设计就相对简单一些。

但是,每一支实际的发射传感器有其工作电压的极限值,即当工作电压超过了这个极限值之后,会对传感器的内部电路造成不可回复的损害。

因此,工作电压不能超过这个极限值。

同时,发射电路中的阻尼电阻决定了电路的阻尼情况。

通常采用改变阻尼电阻的方法来改变发射强度。

电阻大时阻尼小,发射强度大,仪器分辨率低,适宜于探测厚度大,对分辨力要求不高的试件。

电阻小时阻尼大,分辨率高,在探测近表面缺陷时或对分辨力有较高要求时应予采用。

发射部分的点脉冲电压很高,但是由障碍物回波引起的压电晶片产生的射频电压不过几十毫伏,要对这样小的信号进行处理就必须放大到一定的幅度。

接收部分就是由三级放大电路,检波电路及门限判别电路构成的,其中包括杂波抑制电路。

最终达到对回波进行放大检测,产生一个单片机能够识别的中断信号作为回波到达的标志。

但是由于超声传感器固有特性,即盲区的存在,对于回波的接收和处理造成了相当程度的影响。

3.2系统主要参数考虑

系统的主要参数有传感器的指向角、测距的工作频率、声速、脉冲宽度、测量盲区等,下面做介绍并阐述。

3.2.1传感器的指向角θ

传感器的指向角是声束半功率点的夹角,是影响测距的一个重要技术参数,它直接影响测量的分辨率。

对圆片传感器来说,它的大小与工作波长λ,传感器半径r有关。

由(2π/λ)*r*sin(θ/2)=1.615(3-1)

选f0=40KHz时,λ=C/f0=8.5mm。

当f0选定后,指向角θ近似与传感器半径成反比。

指向角θ愈小,空间分辨率愈高,则要求传感器半径r愈大。

鉴于目前电子市场的压电传感片规格有限,为降低成本,在不降低空间分辨率的条件下,选用国产现有压电传感器片最大半径r=6.3mm,故θ=2*arcsin

(1.615λ/2*π*r)=75°。

3.2.2发射脉冲宽度

发射脉冲宽度决定了测距仪的测量盲区,也影响测量精度,同时与信号的发射能量有关。

根据资料,减小发射脉冲宽度,可以提高测量精度,减小测量盲区,但同时也减小了发射能量,对接收回波不利。

但是根据实际的经验,过宽的脉冲宽度会增加测量盲区,对接收回波及比较电路都造成一定困难。

在具体设计中,比较了24μs(1个40KHz脉冲方波),120μs(5个40KHz脉冲方波),240μs(10个40KHz脉冲方波),720μs(30个40KHz脉冲方波)的发射脉冲宽度作为发射信号后的接收信号,最终选用120μs(5个40KHz脉冲方波)的发射脉冲宽度。

此时,从接收回波信号幅度和测量盲区两个方面来衡量比较适中。

3.2.3测量盲区

在以传感器脉冲反射方式工作的情况下,电压很高的发射电脉冲在激励传感器的同时也进入接收部分。

此时,在短时间内放大器的放大倍数会降低,甚至没有放大作用,这种现象称为阻塞。

不同的检测仪阻塞程度不一样。

根据阻塞区内的缺陷回波高度对缺陷进行定量评价会使结果偏低,有时甚至不能发现障碍物,这是需要注意的。

由于发射声脉冲自身有一定的宽度,加上放大器有阻塞问题,在靠近发射脉冲一段时间范围内,所要求发现的缺陷往往不能被发现,这段距离,称为盲区,具体分析如下:

当发射超声波时,发射信号虽然只维持一个极短时间,但停止施加发射信号后,探头上还存在一定余振(由于机械惯性作用)。

因此,在一段较长时间内,加在接收放大器输入端的发射信号幅值仍具一定幅值高度,可以达到限幅电路的限幅电平VM;另一方面,接收探头上接收到的各种反射信号却远比发射信号小,即使是离探头较近的表面反射回来的信号,也达不到限幅电路的限幅电平。

当反射面离探头愈来愈远,接收和发射信号相隔时间愈来愈长,其幅值也愈来愈小。

在超声波检测中,接收信号的衰减总是比发射信号余振衰减慢的多。

为保证一定的信噪比,接收信号幅值需达到规定的阈值Vm,亦即接收信号的幅值必须大于这一阈值才能使接受放大器有输入信号。

 

第4章单片机倒车防撞报警系统各组成单元设计

该超声波测距系统由超声波发射与接收电路、单片机硬件接口电路、显示报警电路组成,下面主要通过各个模块的各种方案比较,确定设计的最终方案。

该系统的核心部分采用性能较好的AT89C51单片机。

4.1发射与接收电路的设计方案

超声波发射与接收电路是整个系统的重要部分,因此确定一种好的设计方案关系整个系统的精确性和安全可靠性。

本文通过多种方案比较,以达到最佳方案确定。

设计方案一:

由施密特振荡器和数字功放电路组成,由P1.0口发出的同步脉冲信号如图4-1。

它启动振荡器,输出40KHz的高频信号,经整形及功放电路,加至发射换能器,发出40kHz的超声波。

接收电路主要由回波放大接收及比较控制电路组成,如图4-1所示。

图4-1接收控制及接口电路

由于发射探头和接收探头都是平行放置且距离较近,发射探头发射超声波时,接收探头会引起强烈的感应信号,因此必须将其隐去。

当P1.0输出启动信号,主控同步脉冲加至比较器A2时,A2输出一个远大于2.5V的电压,经过D2降压后约为7.5V左右,加至A1同相端,又C2的延迟作用,A1同相端产生一定宽度和高度的方波,它的幅度和宽度均大于发射串扰信号,A1输出端即RS触发器的端仍为高电平,这样串扰信号将被隐去。

这段时间称为盲区,约2ms。

设计方案二:

40KHz的超声波发送脉冲信号由单片机的P1.0口送出,发出一系列的脉冲群,每一个脉冲群的持续时间大约为0.5ms左右。

信号经过三极管放大,再经过阻抗匹配电路即变压器(变压器输入输出比为1:

10)后,驱动超声波发射头,发射换能器两端就加上了高电压,内部的压电晶片开始震动,经过压电换能器将发出40kHz的脉冲超声波。

当超声波遇到障碍物时就会产生反射波,发射波返回到超声波传感器上,尽管发射部分的脉冲电压比较高,但是由回波引起的接受压电晶片产生的射频电压幅度近距离有几毫伏,远距离还不到几毫伏,由于在较远距离的情况下,声的回波很弱,因而转换为电信号的幅值也很小,为此要求将信号放大6000倍左右。

信号经过放大整形电路产生一个负脉冲信号,使单片机产生中断。

在接收端第一级,要求其放大倍数为了C945这62倍左右,所以选择只三极管,达到了放大倍数。

第二三级选用了一枚集成放大器NE5532,它集成了两个放大器,可达到预定放大倍数。

设计方案三:

1、发射电路

发射电路由555多谐振荡器和数字功率放大器组成。

采用555多谐振荡器可以实现宽范围占空比的调节,并且电路设计简单占用面积小。

如图4-2所示,由单片机.P1.0口发出同步脉冲信号,该同步脉冲启动多谐振荡器,使其输出20KHz的高频电压信号,经过整形及功放电路加至超声波换能器探头,根据逆压电效应,产生振动频率为20KHz的超声波。

2、接收电路

接收电路主要由回波放大接收电路及比较电路组成。

如图4.3所示,首先调

节可调电阻

使比较器A1同相端电位高于2.5V。

由于D1输出低电平,而反相器N输出高电平,所以有RS触发器的

=0,

=1,Q=1,当P1.0发出启动信号(如图4-2中的

(1)所示)经过微分电路形成的同步脉冲信号通过反相器N的反相功能,

=0,D1箝位释放

=1,Q=0,

=1(正跳变,T0计数器开始记数,脉冲经过之后

=

=1,Q=0,

=1。

回波信号经过放大滤波送至比较器A1的反相端,它是叠加在2.5V上的频率为20KHz的高频电压信号。

如图4.2中的(3)所示,其前上升沿使A1输出低电平,

=0,

=1,Q=1,

=0(负跳变);即

获得负跳沿信号,CPU响应中断请求,使T0计数器停止计数,记数值N送存RAM。

3、盲区干扰信号的消隐

通常发射换能器和接收换能器都是平行放置且距离较近。

当发射探头发射超声波时接收换能器接收到的第一个波是串扰直通波,也称泄漏波它是近源的波束旁瓣或通过绕射由发射换能器直接到达接收换能器而造成的。

因此,通常接收探头会引起强烈的感应信号。

所以必须将其隐去,当P1.0输出启动信息,同步脉冲加至比较器A2时,A2输出一远大于2.5V的电压,经D2降压后大约等于7.5V,加至A1同相端,由于C1延迟作用,A1同相端将产生一定宽度和高度的方波,如图4-2中的(4)所示。

它的宽度和幅度都大于发射串扰信号,A1输出端即RS触发器S端仍为高电平,这样串扰信号将被隐去,这段时间称为盲区,约2毫秒。

图4-2测距脉冲图

图4.3超声波回波接收电路

设计方案四:

1、发射电路

发射

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 院校资料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1