ofdm基本原理总结要点.docx

上传人:b****3 文档编号:535891 上传时间:2022-10-10 格式:DOCX 页数:14 大小:840.34KB
下载 相关 举报
ofdm基本原理总结要点.docx_第1页
第1页 / 共14页
ofdm基本原理总结要点.docx_第2页
第2页 / 共14页
ofdm基本原理总结要点.docx_第3页
第3页 / 共14页
ofdm基本原理总结要点.docx_第4页
第4页 / 共14页
ofdm基本原理总结要点.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

ofdm基本原理总结要点.docx

《ofdm基本原理总结要点.docx》由会员分享,可在线阅读,更多相关《ofdm基本原理总结要点.docx(14页珍藏版)》请在冰豆网上搜索。

ofdm基本原理总结要点.docx

ofdm基本原理总结要点

OFDM基本原理概述

设OFDM信号的符号周期为T,当N个子载波的频率之间的最小间

N表示子信道的个数,T表示OFDM符号宽度,(=0,1,…,N-1)是分配给每个子信道的数据符号,是第0个子载波载波频率,则从t=开始的OFDM符号可以表示为

它的等效基带信号是

式中实部和虚部分别对应于OFDM符号的同相和正交分量,是集中可以分别与相应子载波的余弦分量和正弦分量相乘,构成最终的子信道信号和合成的OFDM符号。

信号解调,接收第k路子载波信号与第k路解调载波相乘,得到的结果在符号持续时间T内进行积分,即可获得相应的发送信号

OFDM复等效基带信号可以采用离散傅立叶逆变化(IFFT)方法来实现。

令=0,t=(k=0,1,….,N-1),即对s(t)以T/N的速率进行抽样可以得到

式中s(k)即为的IDFT运算。

接收端为恢复出原始的数据符号,可以对s(k)进行DFT运算,得到

OFDM文章,时间连续系统模型时,发射机发射的第K个载波波形时,

优----------OFDM调制举例,假定子载波数量为8,在8个子载波上传送8个二进制数{111-111-11}

IFFT调制为

发送端模拟信号s(t)与接收端的模拟信号r(t)间的关系可表示为

n(t)表示信道上的加性高斯白噪声,h(t,)表示t时刻信道的冲击响应。

假定h(t,)在时间[0,]内取值,为取样周期,v为整数,满足。

如果接受端ADC取样速率足够高,无混叠效应

可以简写为。

矩阵表示

记为

当前符号输出信号不仅与当前输入信号有关,而且与前一符号块最后v个输入信号有关,产生了符号块间干扰ISI。

将原符号块最后L(L>=V)个信号放到原符号块的前部,构成N+L新序列。

时域中原来发送信号与信道响应的线性卷积变为圆周卷积。

矩阵表示

记为

两边取DFT,得

可见加入CP,不仅消除ICI,ISI,且把信道变成N个独立的并行子信道。

可以根据各个子信道上具体情况,选择不同的调制方式,优化系统性能。

P80,时域内接收信号,n=1,2,….Nc

Xn是发射的时域符号。

表示成矩阵形式,,其中r=(r1,r2,….,rNc)T,h=(h1,h2,…..hL)T,L为估计到的信道冲激响应的最大长度,除去循环前缀后,信道线性卷积转变为循环卷积矩阵X

以上参考文献《多载波宽带无线通信技术》尹长川北邮出版

基于循环前缀的定时估计算法

MLE算法的原理是在己知接收到的信号条件下,计算(,)在二维空间各种取值的后验概率,选取后验概率最大时的、分别作为频偏估计值和定时估计值,表示相对频偏(实际频偏与相邻子载波频率间隔的比),表示定时偏差,单位是抽样时间间隔,通过推导可以得到如下的公式,令

其中

定时偏差,频偏的估计公式为:

上式中,——第n个抽样点

——FFT窗口长度

——CP长度

|.|表示求复数的幅度,表示复数共扼,angle表示求复数的相位,argmax表示达到最大时参数m的值,SNR是信噪比,可见MLE算法需要估计信道的信噪比,是CP与OFDM符号中被复制部分的相关值,表示的是接收信号的能量值。

定时偏差的估计与频偏无关,因为频偏的存在只是使偏转一个相位,取|.|后,频偏的影响就消除了。

MLE算法可以采用迭代的方法来计算:

(4-5)

从A1到A10为周期性的短训练符号,同为16取样长度C1,C2是长训练符号,其长度和一个OFDM符号长度一样,同为64取样长度。

CP为32的取样循环前缀以保证长训练符号C1,C2不受短训练符号的干扰扰的影响·

 

MIMO-OFDM系统中前导设计如图

注意:

因为在一根天线发送S1或S2时,另一根天线不发送信号,为了不降低在接收端处S1和S2的信噪比,需要将其幅度放大倍

3.3.3OFDM的信道估计与均衡

OFDM是一种很适合在多径环境中采用的传输方案。

从频域看,多径特性可以描述成频率选择性衰落,为了消除多径带来的ICI,ISI,提高BER性能,解决的办法是增加子载波数,使信道的延迟相对减少,使频率选择性衰落在每个子信道上变成平坦衰落。

但是增加子载波数同时意味着减小载波间距,而且对克服系统载波频偏及多普勒频偏、FFT规模大小等都提出了更高要求。

所以实际中采用均衡来消除多径的干扰。

在理想的符号同步及采样时钟同步条件下,接收端经过A/D采样及串并变换之后的接收信号,是一个时域信号。

对于线性信道,在最大信道时延扩展小于系统循环前缀时,各子载波信道之间严格正交。

去掉循环前缀中的L:

个采样值也就去除ICI,ISI的影响。

然后对剩下的N个样值进行FFT变换,得到接收信号的频域形式系OFDM统的等效频域表达式为

信道的影响相当于对信号的频谱乘上一个复增益,各并行子信道的响应彼此独立。

所以可以很方便地对各个子信道进行频域均衡。

因为接收信号和发送信号之间只相差一个乘性因子,可以在各子信道上分别进行均衡,各子信道的接收信号被乘上一个校正因子。

一阶抽头滤波器结构的均衡器就可以满足要求,这对于接收端的复杂度时一个很大的简化。

当hi的变化相对于OFDM周期慢得多时,各子载波信号在各子信道上经历的是平坦衰落,还可以采用插入固定数据帧来进行快速的权值生成、调整。

在本文的仿真中,笔者采用基于训练序列的信道估计方案。

其思想是利用一段与信息符号长度相等的已知伪随机序列作为训练序列,与原符号帧一起通过信道:

在接收端用原已知伪随机序列去除受到信道影响的接收信号即可得到信道的乘性因子。

用这个因子去除有用符号帧,可得到稳定的QAM星座图样,起到有效的信道估计作用。

基于训练序列前导的包检测

Coarsefrequencyoffsetestimationandcorrection

 

 

OFDM信号可以是实的,也可以是复的。

以楼主举的例子,取32个复数,再拼接上它们的共轭对称,这样做IFFT以后就得到实的OFDM信号。

如果要产生复数的OFDM,则直接取64个复数做IFFT。

做IFFT时,实际上第一个数(一定是实数)定义DC成份,第(N/2+1)个复数定义最高频率成分,最后面的(N/2-1)个复数定义负频率成分。

所以,IFFT后的信号的频带是(-fm,fm)。

然后,如果用基带传输,只能传实部,信号的带宽是fm;如果用通带(即用RF载波)传,还可以多传一个复部,但是信号的带宽是2*fm,所以频带的效率是一样的。

ifft([4,6-3*i,2-i,1-i,45,1+i,2+i,6+3*i],8)

ans=8.3750-3.28406.1250-5.55184.8750-6.46605.1250-5.1982

fft([1,2,3,4,5,6,7,8])

ans=36.0000-4.0000+9.6569i-4.0000+4.0000i-4.0000+1.6569i-4.0000-4.0000-1.6569i-4.0000-4.0000i-4.0000-9.6569i

(1)为了产生纯实数的OFDM信号,通常的做法是从信息数据中取N个复数用以定义正频率部分(0~fm),再拼接它们的共轭对称以定义负频率部分(-fm~0)。

然后做IFFT,得到2N点的实数信号,其频率范围是(-fm,fm)。

这样产生的信号,传递N个复数信息数据。

如果用基带传输,带宽为fm。

如果用通带传输,带宽为2fm。

(2)为产生复数的OFDM信号,则直接从信息数据中取2N个复数,直接做IFFT后得到复数的信号,再用cosine和sine载波分别传送实部和虚部。

与产生实数信号的过程相比,由于不需要产生共轭对称的频谱,负频率部分也被用来传送信息数据。

这时RF信号的带宽为2fm,传送2N个复数信息数据。

所以通带传输与基带传输的频带效率是一样的。

(3)lovewa的问题源于一篇IEEE的文章里的方法。

该方法与上面的做法不同,所以令人迷惑。

它的做法是从信息数据中取N个复数,做IFFT后取出实部;在接受端,加倍采样,得到2N个实数,从中恢复出原来的N个信息数据。

由于只传输实部,不传送虚部,lovewa的问题就是:

能否利用通带传输中传输虚部的能力(即用sine载波)再传输一路信息,以提高信道频带的利用率。

(1)一个实数时域信号,无论是用什么方法产生的,它的付氏变换一定是共轭对称的。

如果对这一点有疑问,请复习付氏变换的性质。

所以,当你对一个复数时域信号取出它的实部的时候,你已经使被取出的信号的付氏变换变成共轭对称的了。

(2)exp(j*2*pi*fn*t)是一个复数时域信号。

它的付氏变换是位于fn的一条谱线。

(3)exp(j*2*pi*fn*t)=cos(2*pi*fn*t)+j*sin(2*pi*fn*t)。

如果对exp(j*2*pi*fn*t)取实部,将得到cos(2*pi*fn*t)。

(4)cos(2*pi*fn*t)的付氏变换是位于-fn和fn的共轭对称的两条谱线,而不是一条。

(5)Cn*cos(2*pi*fn*t+Qn)的付氏变换也是位于-fn和fn的共轭对称的两条谱线,而不是一条。

这里Cn和Qn都是实数。

(6)IFFT的计算过程就是把N个复数与N个exp(j*2*pi*fn*t)相乘,再加起来。

(7)所以,对IFFT的结果取实部后得到的是N项 Cn*cos(2*pi*fn*t+Qn)之和。

其中的每一项都有两条谱线,一共有 2N条共轭对称的谱线。

(8)这样的处理,其效果与方法 

(1)中拼接共轭对称谱线的效果是一样的。

这个实数信号被送到信道上。

它的频带宽度与方法 

(1)是一样的,而且同样传送 N个复数。

所以两者的频带效率是相同(9)如果在通带中用 cosine传送这样的信号,可以同时用 sine再传另外一路信号,但是与基带传输相比,带宽增加一倍。

其频带效率与方法 

(2)是相同的,并不能获得比方法 

(2)高的频带效

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 幼儿教育 > 幼儿读物

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1