电力系统无功功率平衡与电压调整.docx

上传人:b****3 文档编号:5357090 上传时间:2022-12-15 格式:DOCX 页数:9 大小:22.32KB
下载 相关 举报
电力系统无功功率平衡与电压调整.docx_第1页
第1页 / 共9页
电力系统无功功率平衡与电压调整.docx_第2页
第2页 / 共9页
电力系统无功功率平衡与电压调整.docx_第3页
第3页 / 共9页
电力系统无功功率平衡与电压调整.docx_第4页
第4页 / 共9页
电力系统无功功率平衡与电压调整.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

电力系统无功功率平衡与电压调整.docx

《电力系统无功功率平衡与电压调整.docx》由会员分享,可在线阅读,更多相关《电力系统无功功率平衡与电压调整.docx(9页珍藏版)》请在冰豆网上搜索。

电力系统无功功率平衡与电压调整.docx

电力系统无功功率平衡与电压调整

电力系统无功功率平衡与电压调整

由于电力系统中节点很多,网络结构复杂,负荷分布不均匀,各节点的负荷变动时,会引起各节点电压的波动。

要使各节点电压维持在额定值是不可能的。

所以,电力系统调压的任务,就是在满足各负荷正常需求的条件下,使各节点的电压偏移在允许范围之内。

由综合负荷的无功功率一电压静态特性分析可知,负荷的无功功率是随电压的降低而减

少的,要想保持负荷端电压水平,就得向负荷供应所需要的无功功率。

所以,电力系统的无功功率必须保持平衡,即无功功率电源发出的无功功率要与无功功率负荷和无功功率损耗平衡。

这是维持电力系统电压水平的必要条件。

一、无功功率负荷和无功功率损耗

1.无功功率负荷

无功功率负荷是以滞后功率因数运行的用电设备(主要是异步电动机)所吸收的无功功

率。

一般综合负荷的功率因数为0.6~0.9,其中,较大的数值对应于采用大容量同步电动机的场合。

2.电力系统中的无功损耗

(1)变压器的无功损耗。

变压器的无功损耗包括两部分。

一部分为励磁损耗,这种无功损耗占额定容量的百分数,基本上等于空载电流百分数I。

%,约为1%〜2%。

因此励磁损耗为

VQTyIoStn/100(Mvar)(5-1-1)

另一部分为绕组中的无功损耗。

在变压器满载时,基本上等于短路电压Uk的百分值,约

为10%这损耗可用式(6-2)求得

VQTzUk(%)STN(鱼)2(Mvar)(5-1-2)

100Stn

式中,Stn为变压器的额定容量(MVA);Stl为变压器的负荷功率(MVA)。

由发电厂到用户,中间要经过多级变压,虽然每台变压器的无功损耗只占每台变压器容量的百分之十几,但多级变压器无功损耗的总和可达用户无功负荷的75%〜100%左

右。

⑵电力线路的无功损耗。

电力线路上的无功功率损耗也分为两部分,即并联电纳和串联电抗中的无功功率损耗。

并联电纳中的无功损耗又称充电功率,与电力线路电压的平方成正比,呈容性。

串联电抗中的无功损耗与负荷电流的平方成正比,呈感性。

因此电力线路作为电力系统的一个元件,究竟是消耗容性还是感性无功功率,根据长线路运行

分析理论,可作一个大致估计。

对线路不长,长度不超过100km,电压等级为220kV

电力线路,线路将消耗感性无功功率。

对线路较长,其长度为300km左右时,对220kV电力线路,线路基本上既不消耗感性无功功率也不消耗容性无功功率,呈电阻性。

大于300km时,线路为电容性的。

二、系统综合负荷的电压静态特性

电力系统中某额定功率的用电设备实际吸收的有功功率和无功功率的大小是随电力网的电压变化而变的,尤其是无功功率受电压的影响很大。

电力系统综合负荷的电压静态

特性是指:

在系统频率等于额定值且负荷连接容量不变时,综合负荷所消耗的有功功率

和无功功率与电压的关系曲线。

电力系统主要负荷的电压静态特性如下。

1.白炽灯负荷

白炽灯由于其灯丝电阻随温度而变化,且不消耗无功功率,所消耗的有功功率可用式(3

—9)表示

Pku1.6(5-1-3)

式中P——有功功率(w);

K——与温度有关的灯丝系数;

U——端电压(V)。

2.电热负荷

电炉和电弧炉均只消耗有功功率,所消耗的有功功率为

U2

P—(5-1-4)

R

式中R——电热设备电阻(Q)。

3.电抗器负荷

电抗器负荷主要消耗无功功率,所消耗的无功功率可用式(3-11)表示

Q—(5-1-5)X

式中Q——无功功率(var);

x——电抗器感抗()。

4.异步电动机负荷

异步电动机需要消耗有功功率来转动机器,又要取用感性无功功率来建立磁场。

异步电动机的功率转差率特性曲线如图5-1-1(a)所示。

若电动机所带的机械负荷不变,当外

电压从额定电压降低到80%Un时,电动机的转差率将从s增大到S2。

转差率增大,将

使电动机的电流增大,因此,电动机吸收的有功功率可近似地看作不变。

异步电动机的有功功率电压静态特性曲线如图5-1-1(b)所示,近似于一条水平直线。

图5-1-1异步电动机特性曲线

(a)功率转差率特性;(b)功率电压静态特性

1——U=100%Un;2——U=90%Un;3——U=80%Un;4——U=70%Un

异步电动机吸收的无功功率受端电压的影响很大。

当端电压接近额定电压时,异步电动机的铁芯磁路接近饱和。

当端电压高于额定电压时,由于磁路饱和,励磁无功将按电压的高次方比例增加。

当端电压低于额定电压时,由于磁路尚未饱和,励磁无功将按电压的平方比例减少。

若电压低于额定电压很多,电动机的转差率将显著增加,弓I起定子电流大幅升高,从而使电动机的漏磁无功损耗大幅增加。

综上所述,异步电动机的无功功率电压静态特性曲线如图5-1-1(b)所示。

在电力系统中,异步电动机占综合负荷的绝大多数。

因此,系统综合负荷的电压静态特性曲线近似于异步电动机的电压静态特性曲线,如图5-1-2所示。

图5-1-2系统综合负荷电压静态特性曲线

(a)有功负荷;(b)无功负荷

由图5-1-2可以看出,电压变化对有功负荷的影响不大,而对无功负荷的影响很大。

当电压升高时,负荷吸收的无功功率显著增加;当电压降低时,负荷吸收的无功功率明显减少。

若电力系统的无功电源不足,为维持系统无功平衡,则不得不降低运行电压,减少负荷吸收的无功功率。

若运行电压过高,贝y表示电力系统的无功电源过剩,应尽量减少各电源的无功功率。

三、电力系统的无功功率平衡

电力系统的无功功率和有功功率一样在运行时也要保持平衡。

电力系统的无功功率平衡方程为

式中Qg——系统各发电厂发出的无功功率总和;

QC无功补偿设备发出的无功功率总和(包括同步调相机、并联电容器、静止补偿

器及输电线路容纳中电容无功功率等)

Q—系统无功负荷的总和;

Qce――各发电厂厂用无功负荷的总和;

Q——电力网各元件无功损耗的总和(包括并联电抗器)。

电力系统的无功负荷主要包括异步电动机、电抗器消耗的无功功率,以及变压器和线路的无功功率损耗。

为维持电力系统的无功功率平衡,还应有一定的无功功率备用容量。

无功备用容量一般为无功负荷的7%~8%。

同步发电机在额定功率因数下运行,若发电机留有一定的有功功率备用容量,也就保持了一定的无功功率备用容量。

根据电力系统综合负荷的电压静态特性曲线和系统无功功率平衡方程,可知,系统电压过低的根本原因,就是系统无功电源不足。

当系统电压过低时,首先要增加系统的无功电源,保持系统无功平衡。

关于无功电源的设置,除发电厂里的发电机以外,无功补偿设备的设置则根据无功分层(电压层次)分区(地区、县或站网络)和就地平衡以及便于调整电压的原则来进行设置。

无功补偿设备的容量需要根据调压要求及系统对功率因数的要求来进行计算。

课题二电力系统无功电源

教学目标

知道电力系统的无功电源。

知识点

发电机,调相机,电容器,静止补偿器。

技能点发电机运行极限图。

教学内容

电力系统的无功电源包括同步发电机、同期调相机、并联电容器和静止补偿器等。

1.同步发电机

发电机是电力系统中唯一的有功功率电源,同时也是基本的无功功率电源。

发电机在正常运行时,其定子电流和转子电流都不应超过额定值。

在额定状态下运行时,发电机容量得到最充分的利用。

设发电机额定视在功率为Sgn,额定有功功率为Pgn,额定功率因数为COSN,则额定无功功率Qgn为

COSNQGNSGNsinNFGNtgN(5-2-1)

下面讨论发电机可能发出的感性无功功率。

图5-2-1(a)所示一隐极机接在Un为常数的

系统母线上,图5-2-1(b)为其等值电路,图5-2-1(C)为额定运行时的相量图。

电压降相量AC的长度代表iNXd,正比于额定视在功率Sgn,它在纵轴上的投影正比于Pgn,在横轴上的投影正比于Qgn,相量0C的长度代表空载电动势En,它正比于发电机的额定励磁电流。

图5-2-1发电机的运行极限图

(a)接线图;(b)等值电路;(c)相量图

当改变功率因数时,发电机可能发出的功率P和Q受到以下限制。

(1)受额定视在功率(定子额定电流)的限制。

如图5-2-1(c)中,用以A为圆心、以AC为半径的圆弧表示。

⑵受转子额定电流的限制。

即用图5-2-1(c)中以0为圆心、以0C为半径的圆弧表示。

(3)受原动机出力(额定有功功率)的限制。

即用以图5-2-1(c)中的水平线巴nC表示。

所以发电机的P—Q极限曲线如图5-2-1(c)中阴影线所示。

从图中可以看到,发电机只有在额定的电压、电流和功率因数下运行时(即运行点C),视在功率才能抵达额定值,其容量得到最充分的利用。

当系统中无功电源不足,而有功备用容量又较充裕时,可利用靠近负荷中心的发电机降低功率因数运行,多发无功功率以提高电力系统的电压水平。

但是发电机的运行点不应越出P—Q极限曲线的范围。

2.同期调相机

调相机实质上就是只能发无功功率的发电机。

它在过激运行时向电力系统供给感性无功功率,欠激运行时从电力系统吸取感性无功功率。

所以改变同期调相机的励磁,可以平滑地改变它的无功功率大小及方向,因而它可以平滑地调节所在地区的电压。

欠激运行时的容量约为过激运行时容量的50%〜60%,这也是作为无功功率电源的调相机的运行极限。

同期调相机可以装设自动调节励磁装置,能自动地在电力系统电压降低时增加输出的无

功功率以维持系统的电压。

特别是有强行励磁装置时,在系统故障情况下也能调整系统的电压,这对提高系统的稳定性是有利的。

但是调相机是旋转机械,运行维护比较复杂。

它的有功功率损耗较大,在满载时损失约为额定容量的1.5%〜5%。

同期调相机常安

装在枢纽变电所,现已很少采用同期调相机,而改用静止补偿器。

3.并联电容器及静止补偿器

并联电容器可按三角形和星形接法连接在变电所母线上,只能供给系统无功功率而不能

吸收无功功率,它供给的无功功率Qc值与所在节点的电压U的平方成正比,即

U2

QcU(5-2-2)

Xc

式中,Xc4c为并联电容器的容抗

故当节点电压下降时,它供给的无功功率也减少。

因此在系统发生故障或其它原因而使电压下降时,其输出的无功功率反而减少,结果导致电力系统电压的继续下降。

这是并联电容器的缺点。

并联电容器的装设既可集中使用,又可分散装设就地供给无功功率。

并联电容器投资费

用少,运行时功率损耗也较小,约为额定容量的0.3%〜0.5%,维护也较方便。

为了

在运行中调节电容器的功率,可将电容器连接成若干组,根据负荷的变化,采用真空断路器分组投入或切除。

近年来采用将电容器同可控电抗器并联使用的静止补偿器,可以按负荷变化调节输出无

功功率的大小和方向,调节性能也好。

国外已广泛使用,我国也开始试用并取得较好的

效果。

静止补偿器的优点:

(1)能快速调节无功功率以适应动态无功补偿的要求;

(2)调节连续平滑,对系统不致引起大的波动;

(3)滤波电路可消除高次谐波对负荷的干扰;

(4)运行维护方便,功率损耗小;

(5)对不平衡的负荷变动有较高的补偿能力,可以作到分相补偿;

(6)对冲击负荷的适应性较强。

课题三电压管理和调压措施

教学目标

知道电压中枢点的调压方式;知道电压调整的基本原理。

知识点

电压中枢点,逆调压,恒调压,顺调压。

技能点

电压调整的措施。

教学内容

一、中枢点电压管理

1.电压中枢点的调压方式

电力系统中监视、控制和调整电压的母线,称为电压中枢点。

只要控制、监视中枢点的电压在一定的允许范围之内,就可以使由其供电的各负荷点的电压质量都得到保证。

通常选择下列母线作为电压中枢点:

(1)区域性水、火电厂的高压母线;

⑵枢纽变电所二次母线;

⑶有大量地方负荷的发电厂母线;

⑷城市直降变电所的二次母线。

2.中枢点的调压方式

电压中枢点的调压方式,按电力网的性质和用电设备对电压的要求不同而有所不同,通常的调压方式有:

逆调压、恒调压和顺调压三种类型。

(1)逆调压。

如中枢点供电至各负荷的电力线路较长,各负荷的变化规律大致相同,且各负荷的变动较大(即最大负荷与最小负荷的差值较大),则在最大负荷时要提高中枢点的电压以抵偿电力线路上因最大负荷而增大的电压损耗,在最小负荷时要将中枢点电压

降低一些以防止负荷点的电压过高。

这种最大负荷时升高电压,最小负荷时降低电压的

中枢点电压调整方式称“逆调压”。

逆调压时,要求最大负荷时将中枢点电压升高至

105%Un,最小负荷时将其下降为Un。

Un为电力线路额定电压。

(2)顺调压。

如负荷变动甚小,电力线路电压损耗也小,或用户为允许电压偏移较大的农业电网,可采用“顺调压”方式,即在最大负荷时允许中枢点电压低一些,但不得低于电力线路额定电压的102.5%,最小负荷时允许中枢点电压高一些,但不得高于电力

线路额定电压的107.5%。

(3)恒调压。

如负荷变动较小,电力线路上电压损耗也较小,则米用介于上述两种调压要求之间的调压方式——恒调压(常调压),即在任何负荷下,中枢点电压保持为大约恒定的数值,一般比电力线路额定电压高2%〜5%。

以上所述的都是电力系统正常运行时的调压要求。

当系统发生事故时,因电压损耗比正常时大,对电压质量的要求允许降低一点。

通常事故时的电压偏移允许较正常时再增大

二、电压调整的基本原理

拥有较充足的无功功率电源是保证电力系统有较好的运行电压水平的必要条件,但是要

使所有用户的电压质量都符合要求,还必须采用各种调压手段。

现以图6—2所示电力

系统为例,说明常用的各种调压措施所依据的基本原理。

图5-3-1电力系统

为简便起见,略去电力线路的电容功率,变压器的励磁功率和网络的功率损耗。

变压器参数已归算到高压侧。

负荷节点b的电压为

ub(ugk1u)/k2(ugk1PRQX)/k2(5-3-1)

QUg

式中,Ki和K2分别为升压和降压变压器的变比(高压比低压),R和X为变压器和电力线路总电阻和总电抗。

由式(5-3-1)可见,为了调整用户端电压Ub可以采用以下措施:

(1)调节励磁电流以改变发电机端电压Ug;

(2)适当选择变压器的变比K;

⑶改善网络参数R和X,改变无功功率Q分布,以减少网络的电压损耗。

三、改变发电机端电压调压

这种调压手段是一种不需耗费投资,且是最直接的调压方法,应首先考虑采用。

发电机的电压调整是借助于调整发电机的励磁电压,以改变发电机转子绕组的励磁电流,就可以改变发电机定子端电压。

现代同步发电机在端电压偏离额定值不超过士5%范围内,

能够以额定功率运行。

对于不同类型的供电网络,发电机调压所起的作用是不同的。

对由发电机不经升压直接供电的小型电力系统,供电线路不长,线路上电压损耗不大,借改变发电机端电压的方法,例如实行逆调压,就可以满足负荷点要求的电压质量。

对由发电机经多级变压向负荷供电的大中型电力系统,线路较长,供电范围较大,从发电厂到最远处的负荷之间的电压损耗和变化幅度都很大。

这时,单靠发电机调压是不能解决问题的。

发电机调压主要是为了满足近处地方负荷的电压质量要求,即发电机采用逆调压方式。

对于远处负荷的电压变动,只能靠其它调压方法来解决。

对有若干发电厂并列运行的大型电力系统,利用发电机调压,会出现新的问题。

首先,当要提高发电机的电压时,则该发电机就要多输出无功功率,这就要求进行电压调整的电厂有相当充裕的无功容量储备。

另外,电力系统内并联运行的发电厂中,调整个别发电厂的母线电压,会引起系统中无功功率的重新分配,这还可能同无功功率的经济分配发生矛盾。

所以在大型电力系统中发电机调压一般只作为一种辅助的调压措施。

四、改变变压器变比调压

考虑到利用变压器调节电压的需要,在双绕组变压器的高压绕组和三绕组变压器的高、中压绕组备有若干分接头可供选择使用。

普通变压器只能在停电情况下改变分接头。

因此,每一变压器必须在事先选好一个合适的分接头,这样在运行中出现最大负荷与最小负荷时,电压偏移不致超出允许范围。

当运行中出现最大负荷与最小负荷时,电压偏移不能同时满足要求,这时只能使用有载调压变压器,它可以在带负荷的条件下切换分接头,而且调节范围大(15%以上)。

一般,如系统中无功不缺乏,凡采用普通变压器不能满足调压要求的场合,如有长线路供电的、负荷变动很大的、系统间联络线两端的以及某些发电厂的变压器和城市直降变电所,采用有载调压变压器后,都可满足要求。

但必须注意的是,这种调压措施不增加系统的无功功率,在系统无功功率不足时,不能单靠这种措施来提高整个系统的电压水平。

五、改变电力网无功功率分布调压

改变变压器变比来调整电压的方法,适用于电力系统无功电源比较充足的情况下。

当电力系统无功电源不足时,应先增加无功电源,采取无功分层分区就地平衡的原则设置并投人无功补偿设备。

无功补偿设备的设置不受能源和地点的限制,可集中安装也可分散安装。

改变电力网的无功功率分布,就地平衡无功负荷,可以减少无功功率在电力网传输过程中产生的电压损耗和功率损耗,提高电网的电压质量和设备利用率。

思考与练习

5-1.电力系统无供电源有哪些?

发电机的运行极限图是如何确定的?

5-2.什么是电压中枢点?

通常选择什么母线作为电压中枢点?

5-3.电压中枢点的调压方式有哪几种?

哪一种方式容易实现,哪一种方式不容易实现,为什么?

5-4.静止补偿器有哪几种类型?

主要特点是什么?

5-5.电力系统有哪几种主要调压措施?

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1