shenlue版《生物化学》重点讲解及习题含答案详解.docx

上传人:b****4 文档编号:5239474 上传时间:2022-12-14 格式:DOCX 页数:81 大小:112.25KB
下载 相关 举报
shenlue版《生物化学》重点讲解及习题含答案详解.docx_第1页
第1页 / 共81页
shenlue版《生物化学》重点讲解及习题含答案详解.docx_第2页
第2页 / 共81页
shenlue版《生物化学》重点讲解及习题含答案详解.docx_第3页
第3页 / 共81页
shenlue版《生物化学》重点讲解及习题含答案详解.docx_第4页
第4页 / 共81页
shenlue版《生物化学》重点讲解及习题含答案详解.docx_第5页
第5页 / 共81页
点击查看更多>>
下载资源
资源描述

shenlue版《生物化学》重点讲解及习题含答案详解.docx

《shenlue版《生物化学》重点讲解及习题含答案详解.docx》由会员分享,可在线阅读,更多相关《shenlue版《生物化学》重点讲解及习题含答案详解.docx(81页珍藏版)》请在冰豆网上搜索。

shenlue版《生物化学》重点讲解及习题含答案详解.docx

shenlue版《生物化学》重点讲解及习题含答案详解

第一章蛋白质

三、习题解答

(一)名词解释

1.两性离子:

指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。

2.必需氨基酸:

指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。

3.氨基酸的等电点:

指氨基酸的正离子浓度和负离子浓度相等时的pH值,用符号pI表示。

4.稀有氨基酸:

指存在于蛋白质中的20种常见氨基酸以外的其它罕见氨基酸,它们是正常氨基酸的衍生物。

5.非蛋白质氨基酸:

指不存在于蛋白质分子中而以游离状态和结合状态存在于生物体的各种组织和细胞的氨基酸。

6.构型:

指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。

构型的转变伴随着共价键的断裂和重新形成。

7.蛋白质的一级结构:

指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。

8.构象:

指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。

一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。

构象改变不会改变分子的光学活性。

9.蛋白质的二级结构:

指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。

10.结构域:

指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。

11.蛋白质的三级结构:

指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。

12.氢键:

指负电性很强的氧原子或氮原子与N-H或O-H的氢原子间的相互吸引力。

13.蛋白质的四级结构:

指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。

14.离子键:

带相反电荷的基团之间的静电引力,也称为静电键或盐键。

15.超二级结构:

指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则的、在空间上能辨认的二级结构组合体。

16.疏水键:

非极性分子之间的一种弱的、非共价的相互作用。

如蛋白质分子中的疏水侧链避开水相而相互聚集而形成的作用力。

17.范德华力:

中性原子之间通过瞬间静电相互作用产生的一种弱的分子间的力。

当两个原子之间的距离为它们的范德华半径之和时,范德华力最强。

18.盐析:

在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解度降低并沉淀析出的现象称为盐析。

19.盐溶:

在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。

20.蛋白质的变性作用:

蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。

蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。

21.蛋白质的复性:

指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象。

22.蛋白质的沉淀作用:

在外界因素影响下,蛋白质分子失去水化膜或被中和其所带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作用。

23.凝胶电泳:

以凝胶为介质,在电场作用下分离蛋白质或核酸等分子的分离纯化技术。

24.层析:

按照在移动相(可以是气体或液体)和固定相(可以是液体或固体)之间的分配比例将混合成分分开的技术。

五.简答题

1.什么是蛋白质的一级结构?

为什么说蛋白质的一级结构决定其空间结构?

答:

蛋白质一级结构指蛋白质多肽链中氨基酸残基的排列顺序。

因为蛋白质分子肽链的排列顺序包含了自动形成复杂的三维结构(即正确的空间构象)所需要的全部信息,所以一级结构决定其高级结构。

2.什么是蛋白质的空间结构?

蛋白质的空间结构与其生物功能有何关系?

答:

蛋白质的空间结构是指蛋白质分子中原子和基团在三维空间上的排列、分布及肽链走向。

蛋白质的空间结构决定蛋白质的功能。

空间结构与蛋白质各自的功能是相适应的。

3.蛋白质的α—螺旋结构有何特点?

答:

(1)多肽链主链绕中心轴旋转,形成棒状螺旋结构,每个螺旋含有3.6个氨基酸残基,螺距为0.54nm,氨基酸之间的轴心距为0.15nm.。

(2)α-螺旋结构的稳定主要靠链内氢键,每个氨基酸的N—H与前面第四个氨基酸的C=O形成氢键。

(3)天然蛋白质的α-螺旋结构大都为右手螺旋。

4.蛋白质的β—折叠结构有何特点?

答:

β-折叠结构又称为β-片层结构,它是肽链主链或某一肽段的一种相当伸展的结构,多肽链呈扇面状折叠。

(1)两条或多条几乎完全伸展的多肽链(或肽段)侧向聚集在一起,通过相邻肽链主链上的氨基和羰基之间形成的氢键连接成片层结构并维持结构的稳定。

(2)氨基酸之间的轴心距为0.35nm(反平行式)和0.325nm(平行式)。

(3)β-折叠结构有平行排列和反平行排列两种。

5.举例说明蛋白质的结构与其功能之间的关系。

答:

蛋白质的生物学功能从根本上来说取决于它的一级结构。

蛋白质的生物学功能是蛋白质分子的天然构象所具有的属性或所表现的性质。

一级结构相同的蛋白质,其功能也相同,二者之间有统一性和相适应性。

6.什么是蛋白质的变性作用和复性作用?

蛋白质变性后哪些性质会发生改变?

答:

蛋白质变性作用是指在某些因素的影响下,蛋白质分子的空间构象被破坏,并导致其性质和生物活性改变的现象。

蛋白质变性后会发生以下几方面的变化:

(1)生物活性丧失;

(2)理化性质的改变,包括:

溶解度降低,因为疏水侧链基团暴露;结晶能力丧失;分子形状改变,由球状分子变成松散结构,分子不对称性加大;粘度增加;光学性质发生改变,如旋光性、紫外吸收光谱等均有所改变。

(3)生物化学性质的改变,分子结构伸展松散,易被蛋白酶分解。

7.简述蛋白质变性作用的机制。

答:

维持蛋白质空间构象稳定的作用力是次级键,此外,二硫键也起一定的作用。

当某些因素破坏了这些作用力时,蛋白质的空间构象即遭到破坏,引起变性。

8.蛋白质有哪些重要功能

答:

蛋白质的重要作用主要有以下几方面:

(1)生物催化作用酶是蛋白质,具有催化能力,新陈代谢的所有化学反应几乎都

是在酶的催化下进行的。

(2)结构蛋白有些蛋白质的功能是参与细胞和组织的建成。

(3)运输功能如血红蛋白具有运输氧的功能。

(4)收缩运动收缩蛋白(如肌动蛋白和肌球蛋白)与肌肉收缩和细胞运动密切相关。

(5)激素功能动物体内的激素许多是蛋白质或多肽,是调节新陈代谢的生理活性物质。

(6)免疫保护功能抗体是蛋白质,能与特异抗原结合以清除抗原的作用,具有免疫功能。

(7)贮藏蛋白有些蛋白质具有贮藏功能,如植物种子的谷蛋白可供种子萌发时利用。

(8)接受和传递信息生物体中的受体蛋白能专一地接受和传递外界的信息。

(9)控制生长与分化有些蛋白参与细胞生长与分化的调控。

(10)毒蛋白能引起机体中毒症状和死亡的异体蛋白,如细菌毒素、蛇毒、蝎毒、蓖麻毒素等。

9.下列试剂和酶常用于蛋白质化学的研究中:

CNBr、异硫氰酸苯酯、丹黄酰氯、脲、6mol/LHCl、β-巯基乙醇、水合茚三酮、过甲酸、胰蛋白酶、胰凝乳蛋白酶。

其中哪一个最适合完成以下各项任务?

(1)测定小肽的氨基酸序列。

(2)鉴定肽的氨基末端残基。

(3)不含二硫键的蛋白质的可逆变性;如有二硫键存在时还需加什么试剂?

(4)在芳香族氨基酸残基羧基侧水解肽键。

(4)在蛋氨酸残基羧基侧水解肽键。

(5)在赖氨酸和精氨酸残基羧基侧水解肽键。

答:

(a)异硫氢酸苯酯;(b)丹黄酰氯;(c)脲、β-巯基乙醇;(d)胰凝乳蛋白酶;(e)CNBr;(f)胰蛋白酶。

10.根据蛋白质一级氨基酸序列可以预测蛋白质的空间结构。

假设有下列氨基酸序列(如图):

151015202527

Ile-Ala-His-Thr-Tyr-Gly-Pro-Glu-Ala-Ala-Met-Cys-Lys-Try-Glu-Ala-Gln-Pro-Asp-Gly-Met-Glu-Cys-Ala-Phe-His-Arg

(1)预测在该序列的哪一部位可能会出弯或β-转角。

(2)何处可能形成链内二硫键?

(3)假设该序列只是大的球蛋白的一部分,下面氨基酸残基中哪些可能分布在蛋白的外表面,哪些分布在内部?

天冬氨酸;异亮氨酸;苏氨酸;缬氨酸;谷氨酰胺;赖氨酸

答:

(1)可能在7位和19位打弯,因为脯氨酸常出现在打弯处。

(2)13位和24位的半胱氨酸可形成二硫键。

(3)分布在外表面的为极性和带电荷的残基:

Asp、Gln和Lys;分布在内部的是非极性的氨基酸残基:

Try、Leu和Val;Thr尽管有极性,但疏水性也很强,因此,它出现在外表面和内部的可能性都有。

 

第二章核酸

核酸习题解答

(一)名词解释

1.单核苷酸(mononucleotide):

核苷与磷酸缩合生成的磷酸酯称为单核苷酸。

2.磷酸二酯键(phosphodiesterbonds):

单核苷酸中,核苷的戊糖与磷酸的羟基之间形成的磷酸酯键。

3.不对称比率(dissymmetryratio):

不同生物的碱基组成由很大的差异,这可用不对称比率(A+T)/(G+C)表示。

4.碱基互补规律(complementarybasepairing):

在形成双螺旋结构的过程中,由于各种碱基的大小与结构的不同,使得碱基之间的互补配对只能在G…C(或C…G)和A…T(或T…A)之间进行,这种碱基配对的规律就称为碱基配对规律(互补规律)。

5.反密码子(anticodon):

在tRNA链上有三个特定的碱基,组成一个密码子,由这些反密码子按碱基配对原则识别mRNA链上的密码子。

反密码子与密码子的方向相反。

6.顺反子(cistron):

基因功能的单位;一段染色体,它是一种多肽链的密码;一种结构基因。

7.核酸的变性、复性(denaturation、renaturation):

当呈双螺旋结构的DNA溶液缓慢加热时,其中的氢键便断开,双链DNA便脱解为单链,这叫做核酸的“溶解”或变性。

在适宜的温度下,分散开的两条DNA链可以完全重新结合成和原来一样的双股螺旋。

这个DNA螺旋的重组过程称为“复性”。

8.退火(annealing):

当将双股链呈分散状态的DNA溶液缓慢冷却时,它们可以发生不同程度的重新结合而形成双链螺旋结构,这现象称为“退火”。

9.增色效应(hyperchromiceffect):

当DNA从双螺旋结构变为单链的无规则卷曲状态时,它在260nm处的吸收便增加,这叫“增色效应”。

10.减色效应(hypochromiceffect):

DNA在260nm处的光密度比在DNA分子中的各个碱基在260nm处吸收的光密度的总和小得多(约少35%~40%),这现象称为“减色效应”。

11.噬菌体(phage):

一种病毒,它可破坏细菌,并在其中繁殖。

也叫细菌的病毒。

12.发夹结构(hairpinstructure):

RNA是单链线形分子,只有局部区域为双链结构。

这些结构是由于RNA单链分子通过自身回折使得互补的碱基对相遇,形成氢键结合而成的,称为发夹结构。

13.DNA的熔解温度(Tm值):

引起DNA发生“熔解”的温度变化范围只不过几度,这个温度变化范围的中点称为熔解温度(Tm)。

14.分子杂交(molecularhybridization):

不同的DNA片段之间,DNA片段与RNA片段之间,如果彼此间的核苷酸排列顺序互补也可以复性,形成新的双螺旋结构。

这种按照互补碱基配对而使不完全互补的两条多核苷酸相互结合的过程称为分子杂交。

15.环化核苷酸(cyclicnucleotide):

单核苷酸中的磷酸基分别与戊糖的3’-OH及5’-OH形成酯键,这种磷酸内酯的结构称为环化核苷酸。

(五)问答题及计算题(解题要点)

1.将核酸完全水解后可得到哪些组分?

DNA和RNA的水解产物有何不同?

答:

核酸完全水解后可得到碱基、戊糖、磷酸三种组分。

DNA和RNA的水解产物

戊糖、嘧啶碱基不同。

2.计算下列各题:

(1)T7噬菌体DNA,其双螺旋链的相对分子质量为2.5×107。

计算DNA链的长度(设核苷酸的平均相对分子质量为650)。

(2.5×107/650)×0.34=1.3×104nm=13μm

(2)相对分子质量为130×106的病毒DNA分子,每微米的质量是多少?

650/0.34=1.9×106/μm。

(3)编码88个核苷酸的tRNA的基因有多长?

88×0.34nm=30nm=0.3μm。

(4)编码细胞色素C(104个氨基酸)的基因有多长(不考虑起始和终止序列)?

104×3×0.34=106nm≈0.11μm。

(5)编码相对分子质量为9.6万的蛋白质的mRNA,相对分子质量为多少(设每个氨基酸的平均相对分子量为120)?

(96000/120)×3×320=76800。

3.对一双链DNA而言,若一条链中(A+G)/(T+C)=0.7,则:

(1)互补链中(A+G)/(T+C)=?

(2)在整个DNA分子中(A+G)/(T+C)=?

(3)若一条链中(A+T)/(G+C)=0.7,则互补链中(A+T)/(G+C)=?

(4)在整个DNA分子中(A+T)/(G+C)=?

答:

(1)设DNA的两条链分别为α和β,那么:

A=βT,Tα=Aβ,Gα=Cβ,:

Cα=Gβ,因为,(Aα+Gα)/(Tβ+Cβ)=(Aα+Gα)/(Aβ+Gβ)=0.7所以,互补链中(Aβ+Gβ)/(Tβ+Cβ)=1/0.7=1.43

(2)在整个DNA分子中,因为A=T,G=C,所以,A+G=T+C,(A+G)/(T+C)=1

(3)假设同

(1),则Aα+Tα=Tβ+Aβ,Gα+Cα=Cβ+Gβ,所以,(Aα+Tα)/(Gα+Cα)=(Aβ+Tβ)/(Gβ+Cβ)=0.7

4)在整个DNA分子中(Aα+Tα+Aβ+Tβ)/(Gα+Cα+Gβ+Cβ)=2(Aα+Tα)/2(Gα+Cα)=0.7

4.DNA热变性有何特点?

Tm值表示什么?

答:

将DNA的稀盐溶液加热到70~100℃几分钟后,双螺旋结构即发生破坏,氢键断裂,两条链彼此分开,形成无规则线团状,此过程为DNA的热变性,有以下特点:

变性温度范围很窄,260nm处的紫外吸收增加;粘度下降;生物活性丧失;比旋度下降;酸碱滴定曲线改变。

Tm值代表核酸的变性温度(熔解温度、熔点)。

在数值上等于DNA变性时摩尔磷消光值(紫外吸收)达到最大变化值半数时所对应的温度。

5.在pH7.0,0.165mol/LNaCl条件下,测得某一DNA样品的Tm为89.3℃。

求出四种碱基百分组成。

答:

为(G+C)%=(Tm–69.3)×2.44×%=(89.3-69.3)×2.44×%=48.8%

G=C=24.4%

(A+T)%=1-48.8%=51.2%

A=T=25.6%

6.述下列因素如何影响DNA的复性过程:

(1)阳离子的存在;

(2)低于Tm的温度;

(2)高浓度的DNA链。

答:

(1)阳离子的存在可中和DNA中带负电荷的磷酸基团,减弱DNA链间的静电作用,促进DNA的复性;

(2)低于Tm的温度可以促进DNA复性;

(3)DNA链浓度增高可以加快互补链随机碰撞的速度、机会,从而促进DNA复性。

7.核酸分子中是通过什么键连接起来的?

答:

核酸分子中是通过3’,5’-磷酸二酯键连接起来的。

8.DNA分子二级结构有哪些特点?

答:

按Watson-Crick模型,DNA的结构特点有:

两条反相平行的多核苷酸链围绕同一中心轴互绕;碱基位于结构的内侧,而亲水的糖磷酸主链位于螺旋的外侧,通过磷酸二酯键相连,形成核酸的骨架;碱基平面与轴垂直,糖环平面则与轴平行。

两条链皆为右手螺旋;双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核酸之间的夹角是36°,每对螺旋由10对碱基组成;碱基按A=T,G¡ÔC配对互补,彼此以氢键相连系。

维持DNA结构稳定的力量主要是碱基堆积力;双螺旋结构表面有两条螺形凹沟,一大一小。

9.在稳定的DNA双螺旋中,哪两种力在维系分子立体结构方面起主要作用?

答:

在稳定的DNA双螺旋中,碱基堆积力和碱基配对氢键在维系分子立体结构方面起主要作用。

10.简述tRNA二级结构的组成特点及其每一部分的功能。

答:

tRNA的二级结构为三叶草结构。

其结构特征为:

(1)tRNA的二级结构由四臂、四环组成。

已配对的片断称为臂,未配对的片断称为环。

(2)叶柄是氨基酸臂。

其上含有CCA-OH3’,此结构是接受氨基酸的位置。

(3)氨基酸臂对面是反密码子环。

在它的中部含有三个相邻碱基组成的反密码子,可与mRNA上的密码子相互识别。

(4)左环是二氢尿嘧啶环(D环),它与氨基酰-tRNA合成酶的结合有关。

(5)右环是假尿嘧啶环(TψC环),它与核糖体的结合有关。

(6)在反密码子与假尿嘧啶环之间的是可变环,它的大小决定着tRNA分子大小。

11.用1mol/L的KOH溶液水解核酸,两类核酸(DNA及RNA)的水解有何不同?

答:

不同。

RNA可以被水解成单核苷酸,而DNA分子中的脱氧核糖2’碳原子上没有羟基,所以DNA不能被碱水解。

12.如何将分子量相同的单链DNA与单链RNA分开?

答:

(1)用专一性的RNA酶与DNA酶分别对两者进行水解。

(2)用碱水解。

RNA能够被水解,而DNA不被水解。

(3)进行颜色反应。

二苯胺试剂可以使DNA变成蓝色;苔黑酚(地衣酚)试剂能使RNA变成绿色。

(4)用酸水解后,进行单核苷酸的分析(层析法或电泳法),含有U的是RNA,含有T的是DNA。

13.计算下列各核酸水溶液在pH7.0,通过1.0cm光径杯时的260nm处的A值(消光度)。

已知:

AMP的摩尔消光系数A260=15400

GMP的摩尔消光系数A260=11700

CMP的摩尔消光系数A260=7500

UMP的摩尔消光系数A260=9900

dTMP的摩尔消光系数A260=9200

求:

(1)32μmol/LAMP,

(2)47.5μmol/LCMP,(3)6.0μmol/LUMP的消光度,(4)48μmol/LAMP和32μmol/LUMP混合物的A260消光度。

(5)A260=0.325的GMP溶液的摩尔浓度(以摩尔/升表示,溶液pH7.0)。

(6)A260=0.090的dTMP溶液的摩尔浓度(以摩尔/升表示,溶液pH7.0)。

答:

已知:

(1)32μmol/LAMP的A260消光度A260=32×10-6×15400=0.493

(2)47.5μmol/LCMP的A260消光度A260=47.5×10-6×7500=0.356

(3)6.0μmol/LUMP的A260消光度A260=6.0×10-6×9900=0.0594

(4)48μmol/LAMP和32μmol/LUMP混合物的A260消光度A260=32×10-6×9900+48×10-6×15400=0.493=1.056

(5)0.325/11700=2.78×10-5mol/L

(6)0.090/9200=9.78×10-6mol/L

14.如果人体有1014个细胞,每个体细胞的DNA量为6.4×109个碱基对。

试计算人体DNA的总长度是多少?

是太阳-地球之间距离(2.2×109公里)的多少倍?

答:

(1)每个体细胞的DNA的总长度为:

6.4×109×0.34nm=2.176×109nm=2.176m

(2)人体内所有体细胞的DNA的总长度为:

2.176m×1014=2.176×1011km

(3)这个长度与太阳-地球之间距离(2.2×109公里)相比为:

2.176×1011/2.2×109=99倍

15.指出在pH2.5、pH3.5、pH6、pH8、pH11.4时,四种核苷酸所带的电荷数(或所带电荷数多少的比较),并回答下列问题:

(1)电泳分离四种核苷酸时,缓冲液应取哪个pH值比较合适?

此时它们是向哪一极移动?

移动的快慢顺序如何?

(2)当要把上述四种核苷酸吸附于阴离子交换树脂柱上时,应调到什么pH值?

(3)如果用洗脱液对阴离子交换树脂上的四种核苷酸进行洗脱分离时,洗脱液应调到什么pH值?

这四种核苷酸上的洗脱顺序如何?

为什么?

答:

种核苷酸带电荷情况:

pH2.5pH3.5pH6pH8pH11.4

UMP负电荷最多-1-1.5-2-3

GMP负电荷较多-0.95-1.5-2-3

AMP负电荷较少-0.46-1.5-2-2

CMP带正电荷-0.16-1.5-2-2

(1)电泳分离四种核苷酸时应取pH3.5的缓冲液,在该pH值时,这四种单核苷酸之间所带负电荷差异较大,它们都向正极移动,但移动的速度不同,依次为:

UMP>GMP>AMP>CMP

(2)应取pH8.0,这样可使核苷酸带较多负电荷,利于吸附于阴离子交换树脂柱。

虽然pH11.4时核苷酸带有更多的负电荷,但pH过稿对树脂不利。

(3)洗脱液应调到pH2.5。

当不考虑树脂的非极性吸附时洗脱顺序为CMP>AMP>UMP>GMP(根据pH2.5时核苷酸负电荷的多少来决定洗脱速度),但实际上核苷酸和聚苯乙烯阴离子交换树脂之间存在着非极性吸附,嘌呤碱基的非极性吸附是嘧啶碱基的3倍。

静电吸附与非极性吸附共同作用的结果使洗脱顺序为:

CMP>AMP>UMP>GMP。

 

第三章酶与辅酶

(一)名词解释

1.米氏常数(Km值):

用Km值表示,是酶的一个重要参数。

Km值是酶反应速度(V)达到最大反应速度(Vmax)一半时底物的浓度(单位M或mM)。

米氏常数是酶的特征常数,只与酶的性质有关,不受底物浓度和酶浓度的影响。

2.底物专一性:

酶的专一性是指酶对底物及其催化反应的严格选择性。

通常酶只能催化一种化学反应或一类相似的反应,不同的酶具有不同程度的专一性,酶的专一性可分为三种类型:

绝对专一性、相对专一性、立体专一性。

3.辅基:

酶的辅因子或结合蛋白质的非蛋白部分,与酶或蛋白质结合得非常紧密,用透析法不能除去。

4.单体酶:

只有一条多肽链的酶称为单体酶,它们不能解离为更小的单位。

分子量为13,000——35,000。

5.寡聚酶:

有几个或多个亚基组成的酶称为寡聚酶。

寡聚酶中的亚基可以是相同的,也可以是不同的。

亚基间以非共价键结合,容易为酸碱,高浓度的盐或其它的变性剂分离。

寡聚酶的分子量从35000到几百万。

6.多酶体系:

由几个酶彼此嵌合形成的复合体称为多酶体系。

多酶复合体有利于细胞中一系列反应的连续进行,以提高酶的催化效率,同时便于机体对酶的调控。

多酶复合体的分子量都在几百万以上。

7.激活剂:

凡是能提高酶活性的物质,都称激活剂,其中大部分是离子或简单的有机化合物。

8.抑制剂:

能使酶的必需基团或酶活性部位中的基团的化学性质改变而降低酶的催化活性甚至使酶的催化活性完全丧失的物质。

9.变构酶:

或称别构酶,是代谢过程中的关键酶,它的催化活性受其三维结构中的构象变化的调节。

10.同工酶:

是指有机体内能够催化同一种化学反应,但其酶蛋白本身的分子结构组成却有所不同的一组酶。

11.诱导酶:

是指当细胞中加入特定诱

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1