燃油喷射装置设计.docx

上传人:b****3 文档编号:5208715 上传时间:2022-12-14 格式:DOCX 页数:33 大小:186.14KB
下载 相关 举报
燃油喷射装置设计.docx_第1页
第1页 / 共33页
燃油喷射装置设计.docx_第2页
第2页 / 共33页
燃油喷射装置设计.docx_第3页
第3页 / 共33页
燃油喷射装置设计.docx_第4页
第4页 / 共33页
燃油喷射装置设计.docx_第5页
第5页 / 共33页
点击查看更多>>
下载资源
资源描述

燃油喷射装置设计.docx

《燃油喷射装置设计.docx》由会员分享,可在线阅读,更多相关《燃油喷射装置设计.docx(33页珍藏版)》请在冰豆网上搜索。

燃油喷射装置设计.docx

燃油喷射装置设计

摘要

内燃机试验是内燃机生产和科学研究工作中不可缺少的一个环节。

随着工业生产和科学技术的迅速发展,内燃机应用的范围在不断扩大,品种和数量在不断增长,对内燃机中各系统零件的性能、使用寿命等技术指标的要求也愈来愈高。

因此,进行内燃机工作过程的研究;节约燃料、扩大燃料的品种、新型结构的研究;以及设计和研制合乎要求的产品的分析改进,以满足各种用途的需要,自然就成为内燃动力工程技术人员的重要任务。

在内燃机试验的自动控制系统中,需对被控参数进行测量,将测量的结果反馈到输入端的求和装置上,与假定值或输入变量进行比较,以达到精确控制的目的。

自动控制系统的控制精度在很大程度上取决于测量反馈精度,因此,被控物理量的测量装置,也就成为内燃机台架试验自动控制系统的重要组成部分。

本课题也是内燃机试验的一个重要组成部分。

主要是对内燃机燃油喷射系统中的油管残留压力进行研究,通过设计相应的油管残留压力测量装置用于检测出残留压力信号,从而可以对油管的残留压力进行定性、定量的分析。

通过对此装置的研究可以使我们对内燃机燃油喷射系统有一定的了解;对燃油喷射系统的压力特性有一个比较全面的认识并对测量控制系统有一定的认识。

关键词:

内燃机,自动控制,求和装置

 

第一章引言………………………………………………………………………1

第二章研制目的…………………………………………………………………2

第三章压燃式发动机的燃料喷射装置概述………………………………2

3.1喷油过程…………………………………………………………………………4

3.2几何供油规律和喷油规律的定义………………………………………………4

3.3喷油器总成………………………………………………………………………5

3.4压力波动的分析…………………………………………………………………6

3.4.1燃油的可压缩性………………………………………………………………6

3.4.2管路的容积变化………………………………………………………………6

3.4.3管路中的压力波动……………………………………………………………7

3.5喷油泵的参数选择及其对柴油机性能的影响…………………………………7

3.6喷油泵的速度特性校正………………………………………………………10

3.6.1可变减压容积………………………………………………………………10

3.6.2可变的减压作用……………………………………………………………10

3.7高压油管………………………………………………………………………11

3.8压燃式内燃机异常喷射现象…………………………………………………11

3.8.1二次喷射……………………………………………………………………12

3.8.2穴蚀…………………………………………………………………………12

3.8.3滴油现象……………………………………………………………………13

3.8.4不稳定喷射…………………………………………………………………13

第四章测量控制系统概述………………………………………………13

第五章残留压力测量装置的研制………………………………………17

5.1残留压力测量装置的原理……………………………………………………17

5.2相位调整………………………………………………………………………18

5.3测量线路………………………………………………………………………18

5.4试验结果分析…………………………………………………………………21

5.5校验压电压力传感器…………………………………………………………22

5.6相关油管嘴端压力与针阀体压力室压力……………………………………23

第六章测试精度……………………………………………………………23

第七章机械传动选用及设计计算………………………………………26

第八章设计小结……………………………………………………………30

第九章参考文献…………………………………………………………32

第一章引言

测试的基本任务是获取有用的信息。

首先是检测出被测对象的有关信息,然后加以处理,最后将其结果提供给观察者或输入其他信息处理装置、控制系统。

因此,测试技术是属于信息科学范畴,是信息技术三大支柱(测试控制技术、计算技术和通信技术)之一。

测量是以确定被测物属性量值为目的的全部操作。

测试技术具有试验性质的测量,或者可理解为测量和试验的综合。

人类在从事社会生产、经济交往和科学研究活动中,都与测试技术息息相关。

测试是人类认识客观世界的手段,是科学研究的基本方法。

科学的基本目的在于客观地描述自然界。

科学定律是定量的定律。

科学探索需要测试技术,用准确而简明的定量关系和数学语言来表述科学规律和理论也需要测试技术,检验科学理论和规律的正确性同样需要测试技术。

可以认为精确的测试是科学的根基。

在工程技术领域中,工程研究、产品开发、生产监督、质量控制和性能试验等,都离不开测试技术。

特别近代工程技术广泛应用着的自动控制技术已越来越多的运用测试技术,测试装置已成为控制系统的重要组成部分。

甚至在日常生活用具,如汽车、家用电器等方面也离不开测试技术。

定性地观察物理现象和定量地测定物理量的大小,是物理实验过程中的主要内容。

测量是人类认识和改造物质世界的重要手段之一。

通过测量,人们可以对客观事物获得数量的概念,通过归纳和分析,总结出规律。

为了进行测量,必须规定一些标准单位,如在国际单位制中,规定长度的单位为米,时间的单位为秒,质量的单位为千克,电流强度的单位为安培等等。

所谓测量是借助仪器把待测物理量的大小用某一选定的单位表示出来,其倍数即为物理量的数值。

测量值应该由数值和单位组成。

总之,测试技术已广泛的应用于工农业生产、科学研究、国内贸易、国防建设、交通运输、医疗卫生、环境保护和人民生活的各个方面,起着越来越重要的作用,成为国民经济发展和社会进步的一项必不可少的重要基础技术。

因而,使用先进的测试技术也成为经济高度发展和科技现代化的重要标志之一。

根据获得测量结果的方法不同,测量可分成两大类:

1.直接测量

能够利用仪器直接读出物理量的测量值的测量称为直接测量,相应的物理量称为直接测量量。

例如,用电压表测量电压,用温度计测量温度等。

2.间接测量

在多数情况下,借助于一定的函数关系,由直接测量通过计算而获得待测物理量的测量称为间接测量,相应得到的物理量称为间接测量量。

例如,圆柱的体积V可以用米尺测出它的高H和直径D,通过计算。

H和D是直接测量量,而体积V则是间接测量。

由于本课题研究的是油管的残留压力,该压力是可通过装置直接采样的,无需通过借助一定的函数关系计算获得,因此该压力测试是直接测量。

第二章研制目的

柴油机供油系统多参数的电测量,为研究供油系统喷射特性提供了手段。

而且,目前在评估新品开发设计的喷油泵和喷油嘴的性能时,也常以多参数的电测量作为考核项目之一。

因此,测量的精确性就显得越发重要了。

本所在以往的电测试验中,出现过油嘴已喷油的工况下,测出的油管压力低于油嘴开启压力的情况。

例如在二零零二年八月高速一号泵的电测试验中,油嘴开启压力为12.5MPA,当油泵转速为250RPM时,测出的嘴端最高压力只有11.69MPA。

还有,日本VE泵在二零零二年九月的试验中,油嘴开启压力为18.13MPA(185kgf/cm2),在油泵转速为390RPM时,测出的嘴端最高压力只有17.013MPA(173.6kgf/cm2)。

在上述两例试验中,油嘴针阀均已开启喷油。

产生这种现象的原因是什么呢?

本所现有使用的传感器、信号转换仪、数据处理仪、都是具有世界先进水平的仪器。

精度很高,随机误差很小。

这就要考虑是否存在较大的系统误差,即要从测试方法的角度去考虑了。

本所目前一般采用压电式传感器测量压力。

压电传感器因其机械强度高,体积小,重量轻、高频特性良好,输出线性好等优点,而被广泛采用。

但当被测压力变化频率低,变化幅度小时,压电晶体的电荷量变化难于反映到测量结果中,即压电传感器的低频特性差。

而我们测量的油路中存在这种变化频率低、幅度小的压力——高压油管中的残留压力。

因此,压电传感器是测不出这种压力的。

上面提到的现象极可能是因为测不出残留压力而产生的。

在课题立项时,还曾考虑过压电传感器灵敏度变化问题,还有高压油管嘴端压力与针阀体内压力室的压力差异问题,是否会对压力测量精度产生一定的影响。

这些都将在下面的论文中予以阐述。

第三章压燃式发动机的燃料喷射装置概述

燃油喷射装置是柴油机的一个重要组成部分,在产品改进和新品试制过程中,为了获得良好的性能指标,往往需要对燃油喷射系统进行大量的调试工作.根据大量实践表明,对现代柴油机喷射装置的要求是:

(1)能精确的控制每循环的喷射量(并要求每缸等量),并在规定的时间内(喷射持续角)喷入汽缸,换言之,即要求具有合适的喷油率.

(2)为了优化柴油机的性能、烟度、噪声和排放,需要具备能随柴油机负荷和转速变化的、精度为±1℃A的喷油提前角。

(3)为了将柴油和空气混合,需要高的喷射压力,对具有强空气涡流的直喷式或非直喷式柴油机,最大喷射压力为30~40MPA,对低涡流直喷式,最大喷射压力约为45~48MPA,对无涡流直喷式,最大喷射压力在100MPA以上。

近年来,得到蓬勃发展的电控喷射系统,在实现要求

(2)方面已比常规的机械液力式喷射装置显示出更大的优越性,并开辟了将喷油系统控制和运输车辆控制结合起来的可能性。

在压燃式内燃机出现早期,燃油喷射是通过高压空气实现的。

一九二七年,德国博世(BOSH)公司开始专业生产以螺旋槽柱塞旋转方式调整供油量的机械式喷油泵,这种喷油泵的工作原理至今仍用于多数压燃式内燃机的燃料供给系统中。

 

图1

如图1整个燃油系统由低压油路(油箱、输油泵、燃料滤请器、)(喷油泵、高压油管、喷油器)和调节系统组成。

其核心部分是高压油路所组成的喷油系统,人们也把这种传统燃料供给系统称之为泵-管-嘴系统。

在这种系统中,喷油泵有柱塞式喷油泵和转子分配式喷油泵两种。

对柱塞式喷油泵,每个柱塞元件对应于一个气缸,多缸内燃机所用的柱塞数和气缸数相等且和为一体,构成合成式喷油泵;对小型单缸和大型多缸内燃机,常采用每个柱塞元件独立组成一个喷油泵,称之为单体喷油泵。

转子分配式喷油泵是用一个或一对柱塞产生高压油向多缸内燃机的气缸内喷油,这种主要用于小缸径高速压燃式内燃机上,其制造成本较低。

在上述泵-管-嘴燃料供给系统中,由于有高压油管的存在,使喷油系统在内燃机上的布置比较方便灵活,加上已积累了长期制造与匹配的理论与经验,因此,目前这种系统仍在各种压燃式内燃机上得到广泛应用。

但是,也正由于高压油管的存在,降低了整个燃油供给系统高压部分的液力刚性,难于实现高压喷射与理想的喷油规律,也使这种传统燃料供给系统的应用前景受到一定的限制。

为了满足压燃式内燃机不断强化及日益严格的排放与噪声法规的要求,目前正在大力发展各种高压、电控的燃料喷射系统,如采用短油管的单体泵系统、泵喷嘴与PT系统、蓄压式或共轨系统等等。

在目前对于上述各种喷射装置的研制中,对喷射装置系统压力性能有着很高的要求,而油管的残留压力,在整个压力系统中占有十分重要的地位,因此对残留压力装置的研究对整个燃油喷射装置性能的提高有着十分重要的作用。

3.1喷油过程

压燃式内燃机工作时,曲轴通过定时齿轮驱动喷油泵旋转,燃油从油箱经滤清、输油泵加压(约0.1~0.15MPA)到喷油泵的低压油腔。

当挺柱体总成的滚轮在凸轮基圆时,柱塞腔与低压油腔通过进、回油孔联通,向柱塞腔供油,喷油泵凸轮轴运转,凸轮推动挺柱体总成克服柱塞弹簧力向上运动。

当柱塞顶面上升到与进、回油孔上边缘平齐,进、回油孔关闭,柱塞腔与低压油腔隔离。

当柱塞再向上运动时,柱塞腔内的燃油被压缩,压力升高。

当压力上升到大于出油阀开启压力与高压油管内残压之和时,出油阀开启,燃油流入出油阀紧帽进到高压油管、喷油器体内油路及针阀体盛油槽内。

柱塞继续上升,油压升高,当喷油器针阀体盛油槽内的油压达到并超过针阀开启压力时,针阀打开,向气缸内喷油。

由于柱塞顶面积大,喷油器的喷孔面积小,故喷射过程中压力继续升高。

当柱塞上升到其斜槽上边缘与回油孔的下边缘相联通时,柱塞再上升,柱塞腔与低压油腔相通,燃油流经回油孔开启截面进入低压油腔,柱塞腔压力下降。

随后出油阀在弹簧力和两端油压的综合作用下开始下行,当减压凸缘进入出油阀座孔后,出油阀紧帽腔与柱塞腔隔离,使紧帽腔到喷油器所组成的高压油路内保持一定量燃油,出油阀仍继续下行到落座。

出油阀在落座过程中,由于减压容积的作用,使高压油路(出油阀紧帽腔、高压油管、喷油器体内油道、盛油槽容积的总和)中燃油压力迅速下降。

当盛油槽内的燃油压力小于针阀关闭压力时,针阀落座,喷油停止。

由于燃油的可压缩性与惯性,压力的传播与反射,高压油管内的燃油将产生一定的压力波,压力波在出油阀紧帽腔到针阀体的盛油槽内不断衰减,趋于一定压力定值即残留压力。

上述喷油过程是可用压力传感器及位移传感器和相应仪器测出,考虑到测量的方便性和可行性,通常喷油过程试验仅测出泵端压力、嘴端压力、针阀升程和喷油速率随凸轮轴转角变化关系。

随后,出油阀落座时,柱塞在凸轮驱动下继续上行到最大行程后,在柱塞弹簧力作用下,沿凸轮下降段下行,在下行过程中,喷油泵不产生泵油作用,至此,完成了一个泵油循环。

在柱塞上升过程中,柱塞从下止点上升到进、回油孔关闭时所经过的距离,称之为喷油泵柱塞的预行程,它的大小决定了柱塞在压油过程中初速度的大小,将影响喷油速率;柱塞封闭进、回油孔开始压油到柱塞斜槽上边缘与回油孔相通开始回油所经历的升程,称之为喷油泵柱塞的有效行程,它的大小与循环供油量有关,决定了喷油器循环喷油量的大小。

从上述喷油过程的概述可知,喷油试验过程涉及了泵端压力嘴端压力。

而为了真实获得这两个压力必须与油管的残留压力结合起来。

因此油管的残留压力是整个喷油过程的一个组成部分,对整个喷射过程有着十分重要的作用。

3.2几何供油规律和喷油规律的定义

几何供油规律是指从几何关系上求出的油泵凸轮每转一度(或每妙)喷油泵供入高压系统的燃油量(mm3/(。

)泵轴或mm3/s)随凸轮轴转角ψ(或时间t)的变化关系。

由于它纯粹是几何关系决定的,因此只要知道柱塞的运动特性即可。

喷油规律是指在喷油过程中,每秒或每度泵轴转角从喷油器喷出的燃油量随时间或泵轴转角的变化关系。

3.3喷油器总成

喷油器总成对于柴油机来说,有着非常重要的作用。

喷油器总成在发动机上的安装及喷油器总成的喷射性能直接影响柴油发动机的动力性、经济性、使用性能及可靠性。

喷油器不仅决定着喷雾质量、油束与燃烧室的配合,而且影响喷油特性(喷油时刻、喷油延续时间、喷油规律),这些都直接影响发动机的性能指标。

如果喷油不良,油束和燃烧室配合不好,则混合气形成恶化,燃烧变坏,性能下降。

在新产品的试制过程中,往往需要对喷油器作大量的调试,才能使柴油机达到设计指标;在使用过程中,常由于喷油器的故障使发动机性能下降,甚至不能运转。

所以喷油器是影响柴油机设计指标和使用性能的关键部件之一。

喷油器总成通过法兰、压板和螺套紧固在发动机的气缸头上,它的喷油嘴端深入到发动机气缸的燃烧室内。

喷油器的高压油道通过高压油管与喷油泵总成的出油阀接头相连接,回油油路相互连接直接回到油箱。

喷油器总成的功用是:

1.将一定数量的具有合适喷射压力的燃油雾化,以促进燃油在发动机气缸内的着火燃烧。

2.借助于(或者不借助于)空气涡流将燃油喷注并力求均匀分布到气缸的燃烧室内,特别对于无涡流的开式燃烧室,喷油器总成的安装精度是一个很值得重视的问题。

一般喷油器总成由喷油嘴偶件、喷油器体、调压装置、油管接头、紧帽等、部件组成。

当高压燃油经高压油道进入喷油嘴偶件盛油槽部位而压力积蓄到能克服调压弹簧对针阀的压紧力时,针阀被升起,高压油进入嘴端的高压腔经喷孔雾化而喷射到气缸的燃烧室内。

当喷油泵终止泵油,油道内压力降低,针阀受弹簧的压力而降致针阀座面以关闭高压腔,这时燃油不能经过喷油孔而进入发动机气缸的燃烧室,而燃烧室的燃点也不能进入喷油器体内。

由于喷油器总成的主要组成是喷油嘴偶件,而喷油嘴偶件又有不同的结构形式,所以喷油器总成也有不同的结构形式。

小发动机的油嘴开启压力较低,而大发动机的油嘴开启压力和关闭压力应足够高,以保证喷射终止后针阀能克服燃烧室高压而落座,否则燃烧室气体将进入油嘴,使喷孔和针阀积碳而进一步影响燃油的喷射和燃烧。

喷油器中喷油压力的影响:

在燃油喷射过程中,燃油压力是变化的。

一般讲,小型高速柴油机的喷油嘴针阀开启压力为12~20MPA,最高燃油压力是40~60MPA,而大型柴油机喷油嘴针阀开启压力为21~30MPA,最高喷油压力约为80~100MPA以上。

喷油压力直接影响喷油持续时间和燃油雾化质量。

如果喷油压力过低,则燃油雾化不好,而且容易引起燃气回窜将喷油嘴烧坏。

随着喷油压力提高,可以使油束出口速度增加,降低油滴的平均直径,使油滴蒸发加快,加速油束在空气中的扩散,使空气卷入的相对速度增加,同时喷射持续期缩短,这样就大大提高了混合气形成速率,从而改善燃烧性能。

喷油压力对然油消耗率的影响:

随着喷油压力提高,燃油消耗率下降。

所以近年来在柴油机上有提高喷油压力的趋势,甚至采用高压喷射。

例如在大型柴油机上喷油压力已提高到100MPA以上,MAN公司的58/64系列柴油机的最高喷油压力已达130MPA,并打算提高到140MPA,在小型高速柴油机上,由于受到喷油泵强度的限制,最高喷油压力通常在70MPA以下。

应该指出,由于最高喷油压力的出现是瞬时的,因此应用平均有效压力(即在喷油持续期内通过喷孔的平均压降)来判断喷油过程的好坏更为合理。

随着平均有效压力的提高,燃油消耗率和烟度都相应下降。

3.4压力波动的分析

在高速柴油机中,燃油喷射的持续时间很短,只有15度~35度曲轴转角。

在这样短的时间内,喷油泵柱塞变速供油,高压管路中燃油压力变化却很大,在喷油时的最高压力可以高达30~100MPA,而不喷射时(即在相邻两次喷油过程之间),高压管路中的残留压力又很低。

由于高压系统中燃油压力变化大和变化快的特点,就产生了下面三种现象:

3.4.1燃油的可压缩性

当压力变化不大时,可以认为液体是不可压缩的,但在柴油机的燃油系统中,由于压力变化幅度大,燃油的可压缩性就必须加以考虑。

当压力变化25MPA时,柴油体积约缩小1%,体积变化的数值不大,但由于每循环的供油量本身就很小(如6135G柴油机全负荷时为0.13ml/循环),而高压管路中积聚的燃油比每循环供油量要多得多,这部分燃油被压缩,喷油器中的压力升高就要延迟,就会对喷油过程产生较大的影响。

燃油的可压缩性

可用压缩系数β表示

m2/N

或写成

m2/N

压力变化愈大或容积愈大,则体积变化也愈大。

当压力变化在(2~3)×107Pa时,β=(4~5)×10-10m2/N

压缩系数β的倒数称为燃油的弹性系数E

E=(2~2.5)×109(N/m2)

3.4.2管路的容积变化

高压油管一般是用厚壁无缝钢管制成,钢管是有弹性的,在高压作用下管子会胀大。

当油管中压力变化为△P时,管子内径改变量为:

式中r—高压油管的内半径

R—高压油管的外半径

u—泊桑系数,钢u=0.3

E—弹性模数,钢E=2.2×1011N/m2

由上式可知,压力变化愈大,管子内径愈大,管子愈长,则容积变化也愈大。

3.4.3管路中的压力波动

燃油的可压缩性和管路的弹性,使高压系统形成一个弹性系统,燃油在高压系统中的流动也就产生弹性振动。

在供油过程中,出油阀开启之前,柱塞运动仅使泵油室中燃油压力升高;出油阀开启的瞬间,在高压油管靠近喷油泵一端的燃油受到自泵油室来的燃油压力冲击,其附近区域产生局部的压力升高,出油阀开启后,柱塞运动将燃油挤向高压油管。

但由于燃油的惯性和可压缩性,柱塞所排挤的燃油量与高压油管中流动的燃油量之间不平衡,造成燃油瞬时堆积,使压力继续升高。

这种局部压力的瞬时提高,都以压力波的形式沿高压油管向喷油器一端传播。

传播的速度就是声速在这种介质中的传播速度,其值约为1400~1600m/s。

这种传播速度应该在纯油状态下;但在实际情况下其值应为700~1200m/s,声速在传播中是变化的。

压力波的传播情况可作以下说明。

当出油阀开启时,高压油管中靠近喷油泵一端的燃油产生的压力波向喷油器一端传播。

经过L/a(L—高压油管长度,a—声速)到达喷油器端。

如果第一个压力波不足以升起针阀,则压力波全部被反射,向喷油泵端传播,反射波经过L/a到达喷油泵端与该处新产生的压力波叠加起来,又被反射向喷油器一端传播。

当压力传播使喷油器端的燃油压力升高到大于针阀开启压力时,针阀即打开,喷油开始,此时,传至喷油器端的压力波仍要部分地反射回去。

所以,在整个供油过程期间,压力波往复传播多次反射,高压油管中的压力也就随时间和地点而变。

在针阀关闭后,油管中的压力仍会往返波动,如果这个波动大,有可能使针阀再度开启,造成不正常喷油,引起燃烧恶化,如果波动不大,由于管壁摩擦阻力和燃料粘性阻尼(内摩擦)的作用,压力波较快衰减,以至在下次供油之前,油管中的压力可以可以达到稳定状态,此时残留压力为pr。

由于上述的压力波动现象存在,使实际喷油过程与柱塞的供油过程很不一致。

这也是对油管的残留压力进行研究的重要原因之一。

3.5喷油泵的参数选择及其对柴油机性能的影响

提高喷油压力的措施很多,如增大柱塞直径;采用较陡的油泵凸轮廓线,提高柱塞供油速度;减少高压系统的阻力,以减少高压燃料的能量损失;减小喷孔直径等。

采用高压喷射后,由于燃烧过程加快,使未燃的碳氢化合物HC的排放明显减少。

燃烧过程加快,就可能采取推迟喷油的措施来降低有害排放物,而又不使燃油经济恶化。

但高压喷射也带来其它问题,如二次喷射、穴蚀,油泵凸轮疲劳剥落等,需要采取相应措施加以解决。

以上问题将在下面的文章中予以说明。

喷油泵柱塞和喷油泵凸轮,共同决定着每循环供油量及几何供油规律,它们对柴油机性能的影响主要反映在供油时刻和供油持续时间(即供油速度)对性能的影响上。

供油时刻可由供油提前角予以调整,而供油持续时间则和柱塞直径、凸轮外形等因素有关。

由于本课题主要是对油管的残留压力进行研究,所以仅对上述几个和油管的残留压力有关的特性参数作简要描述。

直接影响燃烧性能的是喷油提前角,因为测量喷油提前角必须有一套电气设备来测量喷油器针阀开启时刻,这是动态测量,比较麻烦,所以平时柴油机测试,就是测量供油提前角,产品说明书上给用户的提前角的数据都是指供油提前角。

供油提前角就是喷油泵开始压油到上止点为止的曲轴转角,是用静态法测量,也就是使发动机处于停车状态,凭目力观察出油管是否冒出燃油来确定供油始点(溢油法),或者从计算进油孔关闭的时刻来确定。

因此,用静态法测出的供油提前角与实际喷油提前角之间可能有较大的差别,其差别取决于喷油延迟角θx即

θ=θs+θx

θ—供油提前角

θs—喷油提前角

θx—喷油延迟角

θx与许多因素有关。

不同转速和高压油管长度对喷射延迟都有影响,喷油延迟角随转速升高而增大;当油管增长时,由于压力波传播的时间增加,使喷油延迟角也随之加大。

供油提前角对柴油机性能影响很大,主要是影响经济性、压力升高率Δp/Δψ和最高燃烧压力。

供油提前角过大,则燃料在压缩过程中燃烧的数量就多,不仅增加压缩负功使燃油消耗率增高、马力下降,而且θ大时由于着火延迟较长,压力升高率和最高燃烧压力迅速升高,工作粗暴(可以听到有清脆的“嘎嘎”震声),怠速不良,难于起动;如果供油提前角过小,则燃料不能在上止

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1