英文文献翻译.docx

上传人:b****3 文档编号:5208298 上传时间:2022-12-13 格式:DOCX 页数:25 大小:3.22MB
下载 相关 举报
英文文献翻译.docx_第1页
第1页 / 共25页
英文文献翻译.docx_第2页
第2页 / 共25页
英文文献翻译.docx_第3页
第3页 / 共25页
英文文献翻译.docx_第4页
第4页 / 共25页
英文文献翻译.docx_第5页
第5页 / 共25页
点击查看更多>>
下载资源
资源描述

英文文献翻译.docx

《英文文献翻译.docx》由会员分享,可在线阅读,更多相关《英文文献翻译.docx(25页珍藏版)》请在冰豆网上搜索。

英文文献翻译.docx

英文文献翻译

翻译

英文原文

Post-weldheattreatmentcrackingsusceptibilityofT23weldmetalsforfossilfuelapplications

ABSTRACT

Thepost-weldheattreatment(PWHT)crackingsusceptibilitiesofT23steelweldedwithfourtypesoffillermetalswereevaluatedbymeasuringthestress-ruptureparameters(SRP),whicharebasedonboththestress-rupturestrengthandthestress-ruptureductility.Post-weldheattreatmentcrackingtestswereperformedonT23weldmetalsusingaGleeblesystemattemperaturesof650-750℃andatstresslevelsof100-500MPa.TheresultsshowedthattheweldmetalswithahigherSRPexhibitedimprovedrupturestressandductility.InadditiontomeasuringtheSRPvalues,thePWHTcrackingsusceptibilityofeachweldmetalwascomparedanddiscussedwithrespecttothefracturemorphology,thesolutesegregationatthegrainboundary,theprecipitationbehavior,andthedenudedzoneformedduringtreatment(whichcanaffectthestress-ruptureparameter).Itwasfoundthatsolutesegregationwasseverelydeleteriousandresultedinlowerstress-ruptureparameters.Inaddition,MowasfoundtointerruptW-depletionadjacenttoM3CorM23C6particles,retardingandweakeningofthedenudedzonealongthegrainboundaries.

Keywords:

Heattreatments;Welding;Failureanalysis

1.Introduction

T23(2.25Cr-1.6W)steelwasdevelopedforhightemperatureapplicationssuchaschemicalandfossilfuelpowerplants[1,2].IthasbeenreportedthatT23exhibitsimprovedweldabilityandcreeprupturestrengthcomparedtothoseofconventionalT22(2.25Cr-1.0Mo)steel.Suchimprovementsareachievedbyreducingthecarboncontenttoamaximumof0.1%andaddingbothasolidsolutionelement(W)andprecipitationstrengtheningelements(V,Nb)[1-3].WhilethedemandforT23hasgraduallyincreased,reportsonthePWHTcrackingproblemsofthismaterialhavealsoincreased[4-13].Post-weldheattreatmentcracking,alsoknownasreheatcrackingorstressreliefcracking,isgenerallydefinedasintergranularcrackingwithintheweldmetalorintheheat-affectedzonethattakesplaceduringheattreatmentorhightemperatureservice.Thistypeofcrackingisknowntobeasaresultoftheresidualstressproducedafterwelding.ThephenomenonofPWHTcrackinghasbeenexplainedby

(1)precipitationstrengtheningofthematrixandtheformationofasoftdenudedzoneadjacenttothegrainboundaryand

(2)trampelementsegregation(P,S,Sb,Sn,As,Al)ataprioraustenitegrainboundary[5–13].Intheformermechanism,theprecipitationofcarbides(suchasM3CandM23C6)alongaprioraustenitegrainboundaryleadstotheformationofaC-orCr-denudedzone.Assuch,thematrixadjacenttothegrainboundarybecomessofterthanthatoftheactualgrainboundary.Inaddition,theaustenitegraininteriorcanbestrengthenedbytheprecipitationofafinecarbidesuchasMC.Hence,mostofthestrainthatarisesfromstressrelaxationduringthepost-weldheattreatmentcanbeconcentratedinthesoftdenudedzone,causingintergranularcracking.ThesegregationofimpuritiesisalsoknowntocausePWHTcrackingduetotheloweringofthecohesivestrengthalongthegrainboundaries.InastudybyNawrocki,T23wasfoundtopossessahighersusceptibilitytoPWHTcrackingthanT22,duetotheexistenceofafine,dispersive,andstable(V,Nb)CcarbideinthematrixoftheT23[10].

PreviousworksregardingPWHTcrackinginT23havebeenlimitedtoanalysesofthecoarsegrainheat-affectedzones[9,10].Thus,PWHTcrackingbehaviorinweldmetalsisrelativelyunknown.However,suchcrackingfrequentlyoccursinweldmetalsduringtheiruseinpowerplantapplications,resultinginoperationalproblemsandrevenueloss.Assuch,theneedforresearchregardingPWHTcrackinginT23weldmetalshasbeenincreased.Thereby,theaimofthisworkistoobservethePWHTcrackingbehaviorofT23weldmetals.

2.Experimental

Twoferriticsteels,T12(1Cr-0.5Mo)andT23,innormalizedandtemperedconditionswereusedasbasemetalsforthepreparationofdissimilarwelds.ThechemicalcompositionsofthebasemetalsandtheT23fillermetalsareshowninTable1.

Table1ChemicalcompositionsofT23,T12andfillermetals.(wt%)

CMnSiPSCrWMoVNbAl

T230.04–0.10.1–0.60.5<0.03<0.012.251.60.10.2–0.30.02–0.03–

T120.04–0.15<0.5<0.3<0.03<0.021.1–0.5–––

Fillermetal

A0.070.5–0.90.380.01<0.0052.091.420.020.2–0.30.02–0.030.02

B0.070.5–0.90.380.01<0.0052.11.430.090.2–0.30.02–0.030.005

C0.070.5–0.90.380.01<0.0052.391.350.510.2–0.30.02–0.030.007

D0.070.5–0.90.380.01<0.0052.311.320.120.2–0.30.02–0.030.006

GastungstenarcweldingprocessusingfourdifferentT23fillermetalsandaheatinputof8-10kJ/cmwasemployed,andtheweldingparametersaregiveninTable2.TheT23basemetalandthefourT23fillermetalshavesimilarCr,W,V,andNbcontents,butdifferintheircontentsofotheralloyingelementssuchasMoandAl.The“A”and“C”fillermetalscontainmoreAlandMo,respectively.

Table2Weldingconditionsappliedinthisstudy.

WeldingprocessWeldingcurrent(mA)Voltage(V)Travelspeed(cm/min)Heatinput(kJ/cm)

GTAW100–16010–179–148–10

ThetensiletestcapacityofGleebleallowsittosimultaneouslyimposethestressandtemperatureconditionsthatareexperiencedduringweldingandpost-weldheattreatments.ThePWHTcrackingtestswereperformedunderseveralstressstatesat650,700,750℃usingaGleeble1500.ThedimensionsandshapesofthetestspecimensaregiveninFig.1,andaschematicillustrationofthePWHTcrackingtestcycleisshowninFig.2.

Fig.1.GleeblesampleemployedinthePWHTcrackingtest.

Fig.2.SchematicillustrationofthePWHTcrackingtest

Testtemperatureswereselectedforevery50℃incrementbelowtheAe1temperature,basedonaThermo-calccalculation.Mechanicalpropertiesweremeasuredfortheas-weldedspecimensusingaVickershardnesstester,andthefracturesurfacesofthespecimenswereexaminedusingscanningelectronmicroscopy(SEM,JEOL630f).Boththinfoilsamplesandreplicaswereusedforobtainingtransmissionelectronmicroscopy(TEM,JEOL2010)images.Athincarbonfilmwasdepositedontothesamplesandextractedat2Vinthesameetchant.ThecollectedcarbonreplicaswereobservedusingTEM,andtheprecipitateswereidentifiedusingenergydispersivespectroscopy(EDS)andselectedareaelectrondiffraction(SAED)patterns.Thinfoilswerepreparedbymechanicalpolishing,followedbyjetelectropolishingusinganelectrolyteconsistingofamixtureof95%methanoland5%perchloricacid,maintainedatatemperatureof-40℃.Anexaminationofthegrainboundarysegregationwascarriedoutusinganelectronprobemicroanalyzer(EPMA,JEOLJXA-8200).NanoindentationexperimentswereperformedwithNanoindenter-XP(MTSCorp,Oakridge,TN)andacommonBerkovichindenter.Inthenanoindentationexperiments,apeakloadof10mNandaconstantstrainrateof0.2s-1wereemployed.TheequilibriumWandMopartitioningbetweenthecarbidesandthematrixwerecalculatedusingthethermodynamicsoftwareTHERMO-CALC.

3.Resultsanddiscussion

3.1.Microstructuresandrupturetests

AsrevealedbytheTEMimagesinFig.3,themicrostructuresoftheas-weldedspecimenswitheachfillermetalarecomprisedoflathmartensiteandFe-richM3Ccarbideswithasimilarprioraustenitegrainsize(~50um).TheFe-richM3Ccarbideprecipitatesalongthelathboundaryandtheprioraustenitegrainboundary.Suchprecipitateslikelyformduringthecoolingstageoftheweldthermalcycle.AsshowninFig.4,allweldmetalshavesimilarVickershardnessvaluesduetothefactthattheirmicrostructuresaresimilar.Intheas-weldedcondition,thereisnonoticeabledifferenceinthemicrostructuresofthefillermetals.

Fig.3.TEMmicrographsshowingthemicrostructuresoftheas-weldedspecimens(a)A-weldmetal,(b)B-weldmetal,(c)C-weldmetaland(d)D-weldmetal;(e)SAEDpatternand(f)EDSanalysisofFe-richM3Ccarbide.

Fig.4.Vickershardnessesoftheweldmetals.

Inordertocomparethestress-rupturestrengthandthestress-ruptureductilityofweldmetals,thetimetoruptureandthereductioninarea(%)wereplottedasfunctionsoftheappliedstress,inFig.5,inwhichthetimetofractureincreasedwhenlowerappliedstresswasemployed.

Fig.5.ResultsofPWHTcrackingtestsat(a)650℃,(b)700℃and(c)750℃.

Inaddition,theruptureductilitydecreasedasthetimetoruptureincreased.Generally,theapplicationofahigherstresscanproduceagreaterinitialstrain,andthus,causeaductilityincrease.Inaddition,adecreaseintheruptureductilitywithanincreaseinthetimetorupturemayresultfromcarbideprecipitation(M3CandMC)duringtesting.The“C”weldmetalisfoundtopossessrelativelygoodrupturestressandductility.Incontrast,the“A”fillermetalhastheworstruptureductilityandrupturestressatthetemperaturestestedinthiswork.Inthisstudy,TheSRP(stress-ruptureparameter)wasmeasuredbasedonthestress-rupturestrengthandductility[14].ThismethodofcalculatingthePWHTcrackingsusceptibilityhasbeensuccessfullyemployedinSA508,SA533,andCr-Mosteels[15,16].TheSRPistheproductofthestressatarupturetimeof10minandthecorrespondingreductioninarea.AhighvalueofSRPindicatesgoodstress-rupturestrengthandductility,andconsequently,alowsusceptibilitytoPWHTcrackingwouldbeexpected.TheSRPatdifferenttemperaturescanbemeasuredbyextrapolatingthedatafromFig.5.TheSRPsoftheweldmetalsatdifferenttemperaturesaresummarizedinTable3.

Table3Stress-ruptureparametersoftheweldmetalsatdifferenttemperatures.

T

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1