确定控制器参数.docx

上传人:b****6 文档编号:5142366 上传时间:2022-12-13 格式:DOCX 页数:10 大小:23.55KB
下载 相关 举报
确定控制器参数.docx_第1页
第1页 / 共10页
确定控制器参数.docx_第2页
第2页 / 共10页
确定控制器参数.docx_第3页
第3页 / 共10页
确定控制器参数.docx_第4页
第4页 / 共10页
确定控制器参数.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

确定控制器参数.docx

《确定控制器参数.docx》由会员分享,可在线阅读,更多相关《确定控制器参数.docx(10页珍藏版)》请在冰豆网上搜索。

确定控制器参数.docx

确定控制器参数

确定控制器参数

 数字PID控制器控制参数的选择,可按连续-时间PID参数整定方法进行。

   PID控制器的参数整定,可以不依赖于受控对象的数学模型。

工程上,PID控制器的参数常常是通过实验来确定,通过试凑,或者通过实验经验公式来确定。

 常用的方法,采样周期选择,

实验凑试法

 实验凑试法是通过闭环运行或模拟,观察系统的响应曲线,然后根据各参数对系统的影响,反复凑试参数,直至出现满意的响应,从而确定PID控制参数。

  整定步骤

   实验凑试法的整定步骤为"先比例,再积分,最后微分"。

(1)整定比例控制

  将比例控制作用由小变到大,观察各次响应,直至得到反应快、超调小的响应曲线。

(2)整定积分环节

  若在比例控制下稳态误差不能满足要求,需加入积分控制。

  先将步骤

(1)中选择的比例系数减小为原来的50~80%,再将积分时间置一个较大值,观测响应曲线。

然后减小积分时间,加大积分作用,并相应调整比例系数,反复试凑至得到较满意的响应,确定比例和积分的参数。

(3)整定微分环节

  若经过步骤

(2),PI控制只能消除稳态误差,而动态过程不能令人满意,则应加入微分控制,构成PID控制。

  先置微分时间TD=0,逐渐加大TD,同时相应地改变比例系数和积分时间,反复试凑至获得满意的控制效果和PID控制参数。

实验经验法

扩充临界比例度法

 实验经验法调整PID参数的方法中较常用的是扩充临界比例度法,其最大的优点是,参数的整定不依赖受控对象的数学模型,直接在现场整定、简单易行。

  扩充比例度法适用于有自平衡特性的受控对象,是对连续-时间PID控制器参数整定的临界比例度法的扩充。

 整定步骤

 扩充比例度法整定数字PID控制器参数的步骤是:

(1)预选择一个足够短的采样周期TS。

一般说TS应小于受控对象纯延迟时间的十分之一。

(2)用选定的TS使系统工作。

这时去掉积分作用和微分作用,将控制选择为纯比例控制器,构成闭环运行。

逐渐减小比例度,即加大比例放大系数KP,直至系统对输入的阶跃信号的响应出现临界振荡(稳定边缘),将这时的比例放大系数记为Kr,临界振荡周期记为Tr。

(3)选择控制度。

  控制度,就是以连续-时间PID控制器为基准,将数字PID控制效果与之相比较。

通常采用误差平方积分

 作为控制效果的评价函数。

定义控制度

         (3-25)

  采样周期TS的长短会影响采样-数据控制系统的品质,同样是最佳整定,采样-数据控制系统的控制品质要低于连续-时间控制系统。

因而,控制度总是大于1的,而且控制度越大,相应的采样-数据控制系统的品质越差。

控制度的选择要从所设计的系统的控制品质要求出发。

(4)查表确定参数。

根据所选择的控制度,查表3一2,得出数字PID中相应的参数TS,KP,TI和TD。

(5)运行与修正。

将求得的各参数值加入PID控制器,闭环运行,观察控制效果,并作适当的调整以获得比较满意的效果。

{2}PID参数怎样调整最佳?

PID参数整定方法就是确定调节器的比例带PB、积分时间Ti和和微分时间Td。

一般可以通过理论计算来确定,但误差太大。

目前,应用最多的还是工程整定法:

如经验法、衰减曲线法、临界比例带法和反应曲线法。

各种方法的大体过程如下:

(1)经验法又叫现场凑试法,即先确定一个调节器的参数值PB和Ti,通过改变给定值对控制系统施加一个扰动,现场观察判断控制曲线形状。

若曲线不够理想,可改变PB或Ti,再画控制过程曲线,经反复凑试直到控制系统符合动态过程品质要求为止,这时的PB和Ti就是最佳值。

如果调节器是PID三作用式,那么要在整定好的PB和Ti的基础上加进微分作用。

由于微分作用有抵制偏差变化的能力,所以确定一个Td值后,可把整定好的PB和Ti值减小一点再进行现场凑试,直到PB、Ti和Td取得最佳值为止。

显然用经验法整定的参数是准确的。

但花时间较多。

为缩短整定时间,应注意以下几点:

①根据控制对象特性确定好初始的参数值PB、Ti和Td。

可参照在实际运行中的同类控制系统的参数值,或参照表3-4-1所给的参数值,使确定的初始参数尽量接近整定的理想值。

这样可大大减少现场凑试的次数。

②在凑试过程中,若发现被控量变化缓慢,不能尽快达到稳定值,这是由于PB过大或Ti过长引起的,但两者是有区别的:

PB过大,曲线漂浮较大,变化不规则,Ti过长,曲线带有振荡分量,接近给定值很缓慢。

这样可根据曲线形状来改变PB或Ti。

③PB过小,Ti过短,Td太长都会导致振荡衰减得慢,甚至不衰减,其区别是PB过小,振荡周期较短;Ti过短,振荡周期较长;Td太长,振荡周期最短。

④如果在整定过程中出现等幅振荡,并且通过改变调节器参数而不能消除这一现象时,可能是阀门定位器调校不准,调节阀传动部分有间隙(或调节阀尺寸过大)或控制对象受到等幅波动的干扰等,都会使被控量出现等幅振荡。

这时就不能只注意调节器参数的整定,而是要检查与调校其它仪表和环节。

  

(2)衰减曲线法是以4:

1衰减作为整定要求的,先切除调节器的积分和微分作用,用凑试法整定纯比例控制作用的比例带PB(比同时凑试二个或三个参数要简单得多),使之符合4:

1衰减比例的要求,记下此时的比例带PBs和振荡周期Ts。

如果加进积分和微分作用,可按表3-4-2给出经验公式进行计算。

若按这种方式整定的参数作适当的调整。

对有些控制对象,控制过程进行较快,难以从记录曲线上找出衰减比。

这时,只要被控量波动2次就能达到稳定状态,可近似认为是4:

1的衰减过程,其波动一次时间为Ts。

 (3)临界比例带法,用临界比例带法整定调节器参数时,先要切除积分和微分作用,让控制系统以较大的比例带,在纯比例控制作用下运行,然后逐渐减小PB,每减小一次都要认真观察过程曲线,直到达到等幅振荡时,记下此时的比例带PBk(称为临界比例带)和波动周期Tk,然后按表3-4-3给出的经验公式求出调节器的参数值。

按该表算出参数值后,要把比例带放在比计算值稍大一点的值上,把Ti和Td放在计算值上,进行现场观察,如果比例带可以减小,再将PB放在计算值上。

这种方法简单,应用比较广泛。

但对PBk很小的控制系统不适用。

  (4)反应曲线法,前三种整定调节器参数的方法,都是在预先不知道控制对象特性的情况下进行的。

如果知道控制对象的特性参数,即时间常数T、时间迟延ξ和放大系数K,则可按经验公式计算出调节器的参数。

利用这种方法整定的结果可达到衰减率φ=0.75的要求。

{3}PID控制器参数整定的方法很多,概括起来有两大类:

一是理论计算整定法。

它主要是依据系统的数学模型,经过理论计算确定控制器参数。

这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。

二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。

PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。

现在一般采用的是临界比例法。

利用该方法进行PID控制器参数的整定步骤如下:

(1)首先预选择一个足够短的采样周期让系统工作;

(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。

PID参数的设定:

是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P\I\D的大小。

 温度T:

P=20~60%,T=180~600s,D=3-180s

 压力P:

P=30~70%,T=24~180s,

 液位L:

P=20~80%,T=60~300s,

 流量L:

P=40~100%,T=6~60s。

常用口诀:

 参数整定找最佳,从小到大顺序查

 先是比例后积分,最后再把微分加

 曲线振荡很频繁,比例度盘要放大

 曲线漂浮绕大湾,比例度盘往小扳

 曲线偏离回复慢,积分时间往下降

 曲线波动周期长,积分时间再加长

 曲线振荡频率快,先把微分降下来

 动差大来波动慢。

微分时间应加长

 理想曲线两个波,前高后低4比1

 一看二调多分析,调节质量不会低

{4}首先调P参数,别的参数为零使得动态性能满足要求。

  然后调I参数,使得稳态性能满足要求。

  最后调D参数,是系统符合要求。

  {5}我以前做过PID的现场调节,其实只要把PID的功能有个清晰的了解,就可以在具体的PID的调节上形成思路。

另外调节分为理论计算整定法和工程整定方法,你所说的现实中老师傅所用的方法一般成为工程整定方法,这个经验上还比较实用。

比例(P)控制

比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-stateerror)。

积分(I)控制

在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(SystemwithSteady-stateError)。

为了消除稳态误差,在控制器中必须引入“积分项”。

积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。

这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。

因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

微分(D)控制

在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。

自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。

其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。

解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。

这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。

所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

PID是比例,积分,微分的缩写.

比例调节作用:

是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。

比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。

积分调节作用:

是使系统消除稳态误差,提高无差度。

因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。

积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。

反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。

积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。

微分调节作用:

微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。

因此,可以改善系统的动态性能。

在微分时间选择合适情况下,可以减少超调,减少调节时间。

微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。

此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。

微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。

现实中老师傅所用的方法一般成为工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。

PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。

三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。

但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。

现在一般采用的是临界比例法。

利用该方法进行PID控制器参数的整定步骤如下:

(1)首先预选择一个足够短的采样周期让系统工作;

(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;

(3)在一定的控制度下通过公式计算得到PID控制器的参数。

在实际调试中,只能先大致设定一个经验值,然后根据调节效果修改。

对于温度系统:

P(%)20--60,I(分)3--10,D(分)0.5--3

对于流量系统:

P(%)40--100,I(分)0.1--1

对于压力系统:

P(%)30--70,I(分)0.4--3

对于液位系统:

P(%)20--80,I(分)1--5

温度T:

P=20~60%,T=180~600s,D=3-180s

压力P:

P=30~70%,T=24~180s,

液位L:

P=20~80%,T=60~300s,

流量L:

P=40~100%,T=6~60s

先把微分作用取消掉,只保留PI,先调比例,再调积分,最后加上微分再调.

如果振荡过快,加大P.

如果振荡后过很久才稳定,减小P.减少积分时间.

如果振荡的周期太长,加大积分时间.

如果对调节对象变化反应过慢,增大D.

最后把波形调到只有一两个振荡就平稳了,就是最好的效果.

 {7}

一.PID参数如何设定调节

PID就是比例微积分调节,具体你可以参照自动控制课程里有详细介绍!

正作用与反作用在温控里就是当正作用时是加热,反作用是制冷控制。

  PID控制简介

比例(P)控制

  比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-stateerror)。

  积分(I)控制

  在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(SystemwithSteady-stateError)。

为了消除稳态误差,在控制器中必须引入“积分项”。

积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。

这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。

因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

  微分(D)控制

  在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。

自动控制系统在克服误差的调节过程中可能会  出现振荡甚至失稳。

其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。

解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。

这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。

所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

  5、PID控制器的参数整定

  PID控制器的参数整定是控制系统设计的核心内容。

它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。

PID控制器参数整定的方法很多,概括起来有两大类:

一是理论计算整定法。

它主要是依据系统的数学模型,经过理论计算确定控制器参数。

这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。

二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。

PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。

三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。

但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。

现在一般采用的是临界比例法。

利用该方法进行PID控制器参数的整定步骤如下:

(1)首先预选择一个足够短的采样周期让系统工作;

(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。

  PID参数的设定:

是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P\I\D的大小。

  温度T:

P=20~60%,T=180~600s,D=3-180s

  压力P:

P=30~70%,T=24~180s,

  液位L:

P=20~80%,T=60~300s,

  流量L:

P=40~100%,T=6~60s。

书上的常用口诀:

  参数整定找最佳,从小到大顺序查;先是比例后积分,最后再把微分加;曲线振荡很频繁,比例度盘要放大;曲线漂浮绕大湾,比例度盘往小扳;曲线偏离回复慢,积分时间往下降;曲线波动周期长,积分时间再加长;

  曲线振荡频率快,先把微分降下来;动差大来波动慢。

微分时间应加长;理想曲线两个波,前高后低4比1。

  一看二调多分析,调节质量不会低

  这里介绍一种经验法。

这种方法实质上是一种试凑法,它是在生产实践中总结出来的行之有效的方法,并在现场中得到了广泛的应用。

  这种方法的基本程序是先根据运行经验,确定一组调节器参数,并将系统投入闭环运行,然后人为地加入阶跃扰动(如改变调节器的给定值),观察被调量或调节器输出的阶跃响应曲线。

若认为控制质量不满意,则根据各整定参数对控制过程的影响改变调节器参数。

这样反复试验,直到满意为止。

  经验法简单可靠,但需要有一定现场运行经验,整定时易带有主观片面性。

当采用PID调节器时,有多个整定参数,反复试凑的次数增多,不易得到最佳整定参数。

  下面以PID调节器为例,具体说明经验法的整定步骤:

  ⑴让调节器参数积分系数S0=0,实际微分系数k=0,控制系统投入闭环运行,由小到大改变比例系数S1,让扰动信号作阶跃变化,观察控制过程,直到获得满意的控制过程为止。

  ⑵取比例系数S1为当前的值乘以0.83,由小到大增加积分系数S0,同样让扰动信号作阶跃变化,直至求得满意的控制过程。

 (3)积分系数S0保持不变,改变比例系数S1,观察控制过程有无改善,如有改善则继续调整,直到满意为止。

否则,将原比例系数S1增大一些,再调整积分系数S0,力求改善控制过程。

如此反复试凑,直到找到满意的比例系数S1和积分系数S0为止。

  ⑷引入适当的实际微分系数k和实际微分时间TD,此时可适当增大比例系数S1和积分系数S0。

和前述步骤相同,微分时间的整定也需反复调整,直到控制过程满意为止。

  注意:

仿真系统所采用的PID调节器与传统的工业PID调节器有所不同,各个参数之间相互隔离,互不影响,因而用其观察调节规律十分方便。

  PID参数是根据控制对象的惯量来确定的。

大惯量如:

大烘房的温度控制,一般P可在10以上,I=3-10,D=1左右。

小惯量如:

一个小电机带

  一水泵进行压力闭环控制,一般只用PI控制。

P=1-10,I=0.1-1,D=0,这些要在现场调试时进行修正的。

 我提供一种增量式PID供大家参考

 △U(k)=Ae(k)-Be(k-1)+Ce(k-2)

 A=Kp(1+T/Ti+Td/T)

 B=Kp(1+2Td/T)

 C=KpTd/T

 T采样周期Td微分时间Ti积分时间

 用上面的算法可以构造自己的PID算法。

U(K)=U(K-1)+△U(K)

{8}PID参数的整定

PID控制器有4个主要的参数Kp、TI、TD和TS需整定,无论哪一个参数选择得不合适都会影响控制效果。

在整定参数时应把握住PID参数与系统动态、静态性能之间的关系。

在P(比例)、I(积分)、D(微分)这三种控制作用中,比例部分与误差信号在时间上是一致的,只要误差一出现,比例部分就能及时地产生与误差成正比的调节作用,具有调节及时的特点。

比例系数Kp越大,比例调节作用越强,系统的稳态精度越高;但是对于大多数系统,Kp过大会使系统的输出量振荡加剧,稳定性降低。

  积分作用与当前误差的大小和误差的历史情况都有关系,只要误差不为零,控制器的输出就会因积分作用而不断变化,一直要到误差消失,系统处于稳定状态时,积分部分才不再变化。

因此,积分部分可以消除稳态误差,提高控制精度,但是积分作用的动作缓慢,可能给系统的动态稳定性带来不良影响。

积分时间常数TI增大时,积分作用减弱,系统的动态性能(稳定性)可能有所改善,但是消除稳态误差的速度减慢。

  微分部分是根据误差变化的速度,提前给出较大的调节作用。

微分部分反映了系统变化的趋势,它较比例调节更为及时,所以微分部分具有超前和预测的特点。

微分时间常数TD增大时,超调量减小,动态性能得到改善,但是抑制高频干扰的能力下降。

选取采样周期TS时,应使它远远小于系统阶跃响应的纯滞后时间或上升时间。

为使采样值能及时反映模拟量的变化,TS越小越好。

但是TS太小会增加CPU的运算工作量,相邻两次采样的差值几乎没有什么变化,所以也不宜将TS取得过小。

{9}比例调节作用:

是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。

比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。

 积分调节作用:

是使系统消除稳态误差,提高无差度。

因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。

积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。

反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。

积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。

微分调节作用:

微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。

因此,可以改善系统的动态性能。

在微分时间选择合适情况下,可以减少超调,减少调节时间。

微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。

此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。

微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。

      PID作用顺口溜

 【比例】    【积分】     【微分】

 比例调节器,   重定调节器,    说起微分器,

 象个放大器。

   累积有本领。

    一点不神秘。

 一个偏差来,   只要偏差在,    阶跃输入来,

 放大送出去。

   累积不停止。

    输出跳上去,

 放大是多少,   累积快与慢,    下降快与慢,

 旋钮看仔细,   旋钮看仔细。

    旋钮看仔细。

 比例度旋大,   积分时间长,    微分时间长,

 放大倍数低。

   累积速度低。

    下降就慢些。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 销售营销

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1