机械手控制电路.docx

上传人:b****6 文档编号:4992383 上传时间:2022-12-12 格式:DOCX 页数:42 大小:168.58KB
下载 相关 举报
机械手控制电路.docx_第1页
第1页 / 共42页
机械手控制电路.docx_第2页
第2页 / 共42页
机械手控制电路.docx_第3页
第3页 / 共42页
机械手控制电路.docx_第4页
第4页 / 共42页
机械手控制电路.docx_第5页
第5页 / 共42页
点击查看更多>>
下载资源
资源描述

机械手控制电路.docx

《机械手控制电路.docx》由会员分享,可在线阅读,更多相关《机械手控制电路.docx(42页珍藏版)》请在冰豆网上搜索。

机械手控制电路.docx

机械手控制电路

机械手控制电路

学院机电学院

专业电气自动化技术

班级20210302班

姓名孔豪

学号202103023226

指导教师倪涛

学业作品任务书

学生姓名:

孔豪专业:

电气自动化

班级:

202102班学号:

202103023226

指导教师:

倪涛

学业作品题目:

机械手操纵电路

学业作品要紧内容:

(1)机械手的操纵电路的原理

(2)机械手操纵的PLC的程序的编程

(3)机械手操纵的液压系统的选择以及设计

(4)机械手的CAD制图,以及装配图要求完成的要紧内容:

本次设计的液压传动机械手依照规矩的动作顺序,综合运用所学的差不多理论,

统图,PLC操纵图,机械手的机械机构采纳油缸,螺杆导向管等机械件组成;在液压传

动机构中机械手的手臂伸缩采纳伸缩油缸,手腕回转采纳回转油缸,立柱的传动采纳齿

条传动,机械手的升降采纳升降油缸立柱的横移采纳横向移动油缸;在PLC操纵回路中

采纳FX2N,当按下连续启动后,PLC按制定的程序,通过操纵电磁阀的开关来操纵机械

手惊醒相应的动作循环,当按下连续停止后机械手在完成一个循环动作后停止。

 

指导教师签名:

专业负责人签名:

黄冈职业技术学院机电学院

学业作品开题报告

 

课题名称:

机械手操纵电路

 

学院机电学院

专业电气自动化

班级202102班

姓名孔豪

学号202103023226

指导教师倪涛

毕业设计说明书

题目:

机械手操纵电路

 

学院:

黄冈职业技术学院

专业:

电气自动化

学号:

202103023226

姓名:

孔豪

指导教师:

倪涛

 

完成日期:

2021年12月27日

Thedesignofthehydraulicmanipulator

Abstract:

Thedesignofhydraulicdrivemanipulatormovementsundertheprovisionsoftheorderusethebasictheory,basicknowledgeandrelatedmechanicaldesignexpertisecomprehensivelytocompletethedesignanddrawingthenecessaryassembly,hydraulicsystemmapPLCcontrolsystemdiagramManipulatormechanicalstructureusingtanksscrew,guidetubesandothermechanicaldevicecomponentInthehydraulicdrivebodiesmanipulatorarmstretchingusingtelescopictankrotatingcolumnoftanksusedrackmanipulatormovementsusingtankmovementsthecolumntakesthehorizontalmovementoftanksThePLCcontrolcircuitusethetypeofFX2NPLCWhenpressedforcommencementPLCinaccordancewiththeprescribedproceduresthroughthecontrolofthesolenoidvalvetocontroltheswitchmanipulatorcorrespondingmovescycle,afterpresstherowstopbutton,themanipulatorcompleteacycleofactiontostopaftertheholecampaign.

Keywords:

Manipulator,Hydraulic,ControlLoop,PLC.

 

 

第一章前言

1.1工业机器人简介

几千年前人类就期望制造一种像人一样的机器,以便将人类从繁重的劳动中解脱出来。

如古希腊神话«阿鲁哥探险船»中的青铜巨人泰洛斯(Taloas),犹太传奇中的泥土巨人等等,这些漂亮的神话时刻鼓舞着人们一定要把漂亮的神话变为现实,早在两千年前就开始显现了自动木人和一些简单的机械偶人。

到了近代,机器人一词的显现和世界上第一台工业机器人问世之后,不同功能的机器人也相继显现同时活跃在不同的领域,从天上到地下,从工业拓广到农业、林、牧、渔,甚至进入平常百姓家。

机器人的种类之多,应用之广,阻碍之深,是我们始料未及的。

工业机器人由操作机(机械本体)、操纵器、伺服驱动系统和检测传感装置构成,是一种仿人操作、自动操纵、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。

专门适合于多品种、变批量的柔性生产。

它对稳固、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。

机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判定能力,又有机器可长时刻连续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。

1.2世界机器人的进展

近几年国外机器人领域进展有几个趋势:

(1)工业机器人性能不断提高(高速度、高精度、高可靠性、便于操作和修理),而单机价格不断下降,平均单机价格从91年的10.3万美元降至97年的6.5万美元。

(2)机械结构向模块化、可重构化进展。

例如关节模块中的伺服电机、减速机、检测系统三位一体化;由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化装配机器人产品问市。

(3)工业机器人操纵系统向基于PC机的开放型操纵器方向进展,便于标准化、网络化;器件集成度提高,操纵柜日见小巧,且采纳模块化结构;大大提高了系统的可靠性、易操作性和可修理性。

(4)机器人中的传感器作用日益重要,除采纳传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人那么采纳视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策操纵;多传感器融合配置技术在产品化系统中已有成熟应用。

(5)虚拟现实技术在机器人中的作用已从仿真、预演进展到用于过程操纵,如使遥控机器人操作者产生置身于远端作业环境中的感受来操纵机器人。

(6)当代遥控机器人系统的进展特点不是追求全自治系统,而是致力于操作者与机器人的人机交互操纵,即遥控加局部自主系统构成完整的监控遥控操作系统,使智能机器人走出实验室进入有用化时期。

美国发射到火星上的〝索杰纳〞机器人确实是这种系统成功应用的最闻名实例。

(7)机器人化机械开始兴起。

从94年美国开发出〝虚拟轴机床〞以来,这种新型装置已成为国际研究的热点之一,纷纷探究开拓事实上际应用的领域。

1.3我国工业机器人的进展

有人认为,应用机器人只是为了节约劳动力,而我国劳动力资源丰富,进展机器人不一定符合我国国情。

这是一种误解。

在我国,社会主义制度的优越性决定了机器人能够充分发挥其长处。

它不仅能为我国的经济建设带来高度的生产力和庞大的经济效益,而且将为我国的宇宙开发、海洋开发、核能利用等新兴领域的进展做出杰出的奉献。

我国的工业机器人从80年代〝七五〞科技攻关开始起步,在国家的支持下,通过〝七五〞、〝八五〞科技攻关,目前已差不多把握了机器人操作机的设计制造技术、操纵系统硬件和软件设计技术、运动学和轨迹规划技术,生产了部分机器人关键元器件,开发出喷漆、弧焊、点焊、装配、搬运等机器人;其中有130多台套喷漆机器人在二十余家企业的近30条自动喷漆生产线(站)上获得规模应用,弧焊机器人已应用在汽车制造厂的焊装线上。

但总的来看,我国的工业机器人技术及其工程应用的水平和国外比还有一定的距离,如:

可靠性低于国外产品;机器人应用工程起步较晚,应用领域窄,生产线系统技术与国外比有差距;在应用规模上,我国已安装的国产工业机器人约200台,约占全球已安装台数的万分之四。

以上缘故要紧是没有形成机器人产业,当前我国的机器人一辈子产差不多上应用户的要求,〝一客户,一次重新设计〞,品种规格多、批量小、零部件通用化程度低、供货周期长、成本也不低,而且质量、可靠性不稳固。

因此迫切需要解决产业化前期的关键技术,对产品进行全面规划,搞好系列化、通用化、模化设计,积极推进产业化进程。

我国的智能机器人和特种机器人在〝863〞打算的支持下,也取得了许多成果。

其中最为突出的是水下机器人,6000米水下无缆机器人的成果居世界领先水平,还开发出直截了当遥控机器人、双臂和谐操纵机器人、爬壁机器人、管道机器人等机种;在机器人视觉、力觉、触觉、声觉等基础技术的开发应用上开展了许多工作,有了一定的进展基础。

然而在多传感器信息融合操纵技术、遥控加局部自主系统遥控机器人、智能装配机器人、机器人化机械等的开发应用方面那么刚刚起步,与国外先进水平差距较大,需要在原有成绩的基础上,有重点地系统攻关,才能形成系统配套可供有用的技术和产品,以期在〝十五〞后期立于世界先进行列之中。

1.4我要设计的机械手

1.4.1臂力的确定

目前使用的机械手的臂力范畴较大,国内现有的机械手的臂力最小为0.15N,最大为8000N。

本液压机械手的臂力为L臂=1650(N),安全系数K一样可在1.5~3,本机械手取安全系数K=2。

定位精度为±1mm。

1.4.2工作范畴的确定

机械手的工作范畴依照工艺要求和操作运动的轨迹来确定。

一个操作运动的轨迹是几个动作的合成,在确定的工作范畴时,可将轨迹分解成单个的动作,由单个动作的行程确定机械手的最大行程。

本机械手的动作范畴:

手腕回转角度±115°;手臂伸长量150mm;手臂回转角度±115°;手臂升降行程170mm;手臂水平运动行程100mm。

1.4.3确定运动速度

机械手各动作的最大行程确定之后,可依照生产需要的工作拍节分配每个动作的时刻,进而确定各动作的运动速度。

液压上料机械手要完成整个上料过程,需完成夹紧工件、手臂升降、伸缩、回转,平移等一系列的动作,这些动作都应该在工作拍节规定的时刻内完成,具体时刻的分配取决于专门多因素,依照各种因素反复考虑,对分配的方案进行比较,才能确定。

机械手的总动作时刻应小于或等于工作拍节,假如两个动作同时进行,要按时刻长的运算,分配各动作时刻应考虑以下几点:

(1)给定的运动时刻应大于电气、液压元件的执行时刻;

(2)伸缩运动的速度要大于回转运动的速度,因为回转运动的惯性一样大于伸缩运动的惯性。

在满足工作拍节要求的条件下,应尽量选取较底的运动速度。

机械手的运动速度与臂力、行程、驱动方式、缓冲方式、定位方式都有专门大关系,应依照具体情形加以确定。

(3)在工作拍节短、动作多的情形下,常使几个动作同时进行。

为此驱动系统要采取相应的措施,以保证动作的同步。

液压上料机械手的各运动速度:

手腕回转速度(V腕回=40°/s);手臂伸缩速度(V臂伸=50mm/s);手臂回转速度(V臂回=40°/s);手臂升降速度(V臂升=50mm/s);立柱水平运动速度(V柱移=50mm/s);手指夹紧油缸的运动速度(V夹=50mm/s)

1.4.4手臂的配置形式

机械手的手臂配置形式差不多上反映了它的总体布局。

运动要求、操作环境、工作对象的不同,手臂的配置形式也不尽相同。

本机械手采纳机座式。

机座式结构多为工业机器人所采纳,机座上能够装上独立的操纵装置,便于搬运与安放,机座底部也能够安装行走机构,已扩大其活动范畴,它分为手臂配置在机座顶部与手臂配置在机座立柱上两种形式,本机械手采纳手臂配置在机座立柱上的形式。

手臂配置在机座立柱上的机械手多为圆柱坐标型,它有升降、伸缩与回转运动,工作范畴较大。

1.4.5位置检测装置的选择

机械手常用的位置检测方式有三种:

行程开关式、模拟式和数字式。

本机械手采纳行程开关式。

利用行程开关检测位置,精度低,故一样与机械挡块联合应用。

在机械手中,用行程开关与机械挡块检测定位既精度高又简单有用可靠,故应用也是最多的。

1.4.6驱动与操纵方式的选择

机械手的驱动与操纵方式是依照它们的特点结合生产工艺的要求来选择的,要尽量选择操纵性能好、体积小、修理方便、成本底的方式。

操纵系统也有不同的类型。

除一些专用机械手外,大多数机械手均需进行专门的操纵系统的设计。

驱动方式一样有四种:

气压驱动、液压驱动、电气驱动和机械驱动。

参考«工业机器人»表9-6和表9-7,按照设计要求,本机械手采纳的驱动方式为液压驱动,操纵方式为固定程序的PLC操纵。

 

第二章手部结构

2.1概述

手部是机械手直截了当用于抓取和握紧工件或夹持专用工具进行操作的部件,它具有仿照人手的功能,并安装于机械手手臂的前端。

机械手结构型式不象人手,它的手指形状也不象人的手指、,它没有手掌,只有自身的运动将物体包住,因此,手部结构及型式依照它的使用场合和被夹持工件的形状,尺寸,重量,材质以及被抓取部位等的不同而设计各种类型的手部结构,它一样可分为钳爪式,气吸式,电磁式和其他型式。

钳爪式手部结构由手指和传力机构组成。

其传力机构形式比较多,如滑槽杠杆式、连杆杠杆式、斜楔杠杆式、齿轮齿条式、弹簧杠杆式……等,那个地点采纳滑槽杠杆式。

2.2设计时应考虑的几个问题

〔1〕应具有足够的握力(即夹紧力)

在确定手指的握力时,除考虑工件重量外,还应考虑在传送或操作过程中所产生的惯性力和振动,以保证工件不致产生松动或脱落。

〔2〕手指间应有一定的开闭角

两个手指张开与闭合的两个极限位置所夹的角度称为手指的开闭角。

手指的开闭角保证工件能顺利进入或脱开。

假设夹持不同直径的工件,应按最大直径的工件考虑。

〔3〕应保证工件的准确定位

为使手指和被夹持工件保持准确的相对位置,必须依照被抓取工件的形状,选择相应的手指形状。

例如圆柱形工件采纳带‘V’形面的手指,以便自动定心。

〔4〕应具有足够的强度和刚度

手指除受到被夹持工件的反作用力外,还受到机械手在运动过程中所产生的惯性力和振动的阻碍,要求具有足够的强度和刚度以防止折断或弯曲变形,但应尽量使结构简单紧凑,自重轻。

〔5〕应考虑被抓取对象的要求

应依照抓取工件的形状、抓取部位和抓取数量的不同,来设计和确定手指的形状。

 

1.手指2.销轴3.拉杆4.指座

图1滑槽杠杆式手部受力分析

2.3驱动力的运算

如下图为滑槽式手部结构。

在拉杆3作用下销轴2向上的拉力为P,并通过销轴中心O点,两手指1的滑槽对销轴的反作用力为P1、P2,其力的方向垂直于滑槽中心线OO1和OO2并指向O点,P1和P2的延长线交O1O2于A及B,由于△O1OA和△O2OA均为直角三角形,故∠AOC=∠BOC=α。

依照销轴的力平稳条件,即

∑Fx=0,P1=P2;∑Fy=0

P=2P1cosα

P1=P/2cosα

销轴对手指的作用力为p1′。

手指握紧工件时所需的力称为握力(即夹紧力),假想握力作用在过手指与工件接触面的对称平面内,并设两力的大小相等,方向相反,以N表示。

由手指的力矩平稳条件,即∑m01(F)=0得

P1′h=Nb

因h=a/cosα

因此P=2b(cosα)

N/a

式中a——手指的回转支点到对称中心线的距离(毫米)。

α——工件被夹紧时手指的滑槽方向与两回转支点连线间的夹角。

由上式可知,当驱动力P一定时,α角增大那么握力N也随之增加,但α角过大会导致拉杆(即活塞)的行程过大,以及手指滑槽尺寸长度增大,使之结构加大,因此,一样取α=30°~40°。

那个地点取角α=30度。

这种手部结构简单,具有动作灵活,手指开闭角大等特点。

查«工业机械手设计基础»中表2-1可知,V形手指夹紧圆棒料时,握力的运算公式N=0.5G,综合前面驱动力的运算方法,可求出驱动力的大小。

为了考虑工件在传送过程中产生的惯性力、振动以及传力机构效率的阻碍,事实上际的驱动力P实际应按以下公式运算,即:

P实际=PK1K2/η

式中η——手部的机械效率,一样取0.85~0.95;

K1——安全系数,一样取1.2~2

K2——工作情形系数,要紧考虑惯性力的阻碍,K2可近似按下式估量,K2=1+a/g,其中a为被抓取工件运动时的最大加速度,g为重力加速度。

本机械手的工件只做水平和垂直平移,当它的移动速度为500毫米/秒,移动加速度为1000毫米/秒

,工件重量G为98牛顿,V型钳口的夹角为120°,α=30°时,拉紧油缸的驱动力P和P实际运算:

依照钳爪夹持工件的方位,由水平放置钳爪夹持水平放置的工件的当量:

M=0.5G

把条件代入得当量夹紧力为

M=49(N)

由滑槽杠杆式结构的驱动力运算公式

P=2b(cosα)

N/a得

P=P运算=2*45/27(cos30°)

*49=122.5(N)

P实际=P运算K1K2/η

取η=0.85,K1=1.5,K2=1+1000/9810≈1.1

那么P实际=122.5*1.5*1.1/0.85=238(N)

2.4两支点回转式钳爪的定位误差的分析

 

图2带浮动钳口的钳爪

钳口与钳爪的连接点E为铰链联结,如图示几何关系,假设设钳爪对称中心O到工件中心O′的距离为x,那么

x=

当工件直径变化时,x的变化量即为定位误差△,设工件半径R由Rmax变化到Rmin时,其最大定位误差为

△=∣-

其中l=45mm,b=5mm,a=27mm,2

=120°,Rmin=15mm,Rmax=30mm

代入公式运算得

最大定位误差△=∣44.2-44.7∣=0.5<0.8

故符合要求.

第三章腕部的结构

3.1概述

腕部是连接手部与臂部的部件,起支承手部的作用。

设计腕部时要注意以下几点:

(1)结构紧凑,重量尽量轻。

(2)转动灵活,密封性要好。

(3)注意解决好腕部也手部、臂部的连接,以及各个自由度的位置检测、管线的布置以及润滑、修理、调整等问题

(4)要适应工作环境的需要。

另外,通往手腕油缸的管道尽量从手臂内部通过,以便手腕转动时管路不扭转和不外露,使外形整齐。

3.2腕部的结构形式

本机械手采纳回转油缸驱动实现腕部回转运动,结构紧凑、体积小,但密封性差,回转角度为±115°.

如以下图所示为腕部的结构,定片与后盖,回转缸体和前盖均用螺钉和销子进行连接和定位,动片与手部的夹紧油缸缸体用键连接。

夹紧缸体也指座固连成一体。

当回转油缸的两腔分别通入压力油时,驱动动片连同夹紧油缸缸体和指座一同转动,即为手腕的回转运动。

 

图3机械手的腕部结构

3.3手腕驱动力矩的运算

驱动手腕回转时的驱动力矩必须克服手腕起动时所产生的惯性力矩必须克服手腕起动时所产生的惯性力矩,手腕的转动轴与支承孔处的摩擦阻力矩,动片与缸径、定片、端盖等处密封装置的摩擦阻力矩以及由于转动的重心与轴线不重合所产生的偏重力矩。

手腕转动时所需要的驱动力矩可按下式运算:

M驱=M惯+M偏+M摩(N.m)

式中M驱——驱动手腕转动的驱动力矩

M惯——惯性力矩(N.m)

M偏——参与转动的零部件的重量(包括工件、手部、手腕回转缸体的动片)对转动轴线所产生的偏重力矩(N.m)

M摩——手腕转动轴与支承孔处的摩擦力矩(N.m)

 

图4腕部回转力矩运算图

(1)摩擦阻力矩M摩

M摩=

(N1D1+N2D2)(N.m)

式中f——轴承的摩擦系数,滚动轴承取f=0.02,滑动轴承取f=0.1;

N1、N2——轴承支承反力(N);

D1、D2——轴承直径(m)

由设计知D1=0.035mD2=0.054mN1=800NN2=200NG1=98Ne=0.020时

M摩=0.1*(200*0.035+800*0.054)/2

得M摩=2.50(N.m)

(2)工件重心偏置力矩引起的偏置力矩M偏

M偏=G1e(N.m)

式中G1——工件重量(N)

e——偏心距(即工件重心到碗回转中心线的垂直距离),当工件重心与手腕回转中心线重合时,M偏为零

当e=0.020,G1=98N时

M偏=1.96(N·m)

(3)腕部启动时的惯性阻力矩M惯

①当明白手腕回转角速度

时,可用下式运算M惯

M惯=(J+J工件)

(N·m)

式中

——手腕回转角速度(1/s)

T——手腕启动过程中所用时刻(s),(假定启动过程中近为加速运动)

J——手腕回转部件对回转轴线的转动惯量(kg·m

J工件——工件对手腕回转轴线的转动惯量(kg·m

按运算得J=2.5,J工件=6.25,

=0.3m/m

t=2

故M惯=1.3(N·m)

当明白启动过程所转过的角度

时,也能够用下面的公式运算M惯:

M惯=(J+J工件)

(N·m)

式中

——启动过程所转过的角度(rad);

——手腕回转角速度(1/s)。

考虑到驱动缸密封摩擦缺失等因素,一样将M取大一些,可取

M=1.1∽1.2(M惯+M偏+M摩)(N.m)

M=1.2*(2.5+1.96+1.3)=6.9(N.m)

 

第四章臂部的结构

4.1概述

臂部是机械手的要紧执行部件,其作用是支承手部和腕部,并将被抓取的工件传送到给定位置和方位上,因而一样机械手的手臂有三个自由度,即手臂的伸缩、左右回转和升降运动。

手臂的回转和升降运动是通过立柱来实现的。

;立柱的横向移动即为手臂的横向移动。

手臂的各种运动通常由驱动机构和各种传动机构来实现,因此,它不仅仅承担被抓取工件的重量,而且承担手部、手腕、和手臂自身的重量。

手臂的结构、工作范畴、灵活性以及抓重大小(即臂力)和定位精度等都直截了当阻碍机械手的工作性能,因此必须依照机械手的抓取重量、运动形式、自由度数、运动速度及其定位精度的要求来设计手臂的结构型式。

同时,设计时必须考虑到手臂的受力情形、油缸及导向装置的布置、内部管路与手腕的连接形式等因素。

因此设计臂部时一样要注意下述要求:

刚度要大为防止臂部在运动过程中产生过大的变形,手臂的截面形状的选择要合理。

弓字形截面弯曲刚度一样比圆截面大;空心管的弯曲刚度和扭曲刚度都比实心轴大得多。

因此常用钢管作臂杆及导向杆,用工字钢和槽钢作支承板。

导向性要好为防止手臂在直线移动中,沿运动轴线发生相对运动,或设置导向装置,或设计方形、花键等形式的臂杆。

偏重力矩要小所谓偏重力矩确实是指臂部的重量对其支承回转轴所产生的静力矩。

为提高机器人的运动速度,要尽量减少臂部运动部分的重量,以减少偏重力矩和整个手臂对回转轴的转动惯量。

运动要平稳、定位精度要高由于臂部运动速度越高、重量越大,惯性力引起的定位前的冲击也就越大

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 政史地

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1