Numerical Simulation of flow around the squareback of Ahmed body by PowerFlow.docx
《Numerical Simulation of flow around the squareback of Ahmed body by PowerFlow.docx》由会员分享,可在线阅读,更多相关《Numerical Simulation of flow around the squareback of Ahmed body by PowerFlow.docx(43页珍藏版)》请在冰豆网上搜索。
NumericalSimulationofflowaroundthesquarebackofAhmedbodybyPowerFlow
Studienarbeit(M.Sc.)
NumerischeStrömungssimulationumeinVollheckAhmedModellsmitPowerFlow
NumericalsimulationoftheflowaroundasquarebackAhmedmodelwithPowerFlow
von
cand.fmtXinleiMa
Matr.Nr.3101346
UniversitätStuttgart
InstitutfürVerbrennungsmotorenundKraftfahrwesen
LehrstuhlKraftfahrwesen
Prof.Dr.-Ing.J.Wiedemann
2017.8.20
EidesstattlicheErklärung
Hiermitversichereich,XinleiMa,dassichdievorliegendeArbeitbzw.diedarinmitmeinemNamengekennzeichnetenAnteileselbständigverfasstundnurdieangegebenenQuellenundHilfsmittelbenutzthabe.DabeihabeichallewörtlichodersinngemäßausanderenWerkenübernommenenAussagenalssolchegekenn-zeichnet.
DieArbeitistwedervollständignochinwesentlichenTeilenGegenstandeinesanderenPrüfungsverfahrensgewesen.FerneristsiewedervollständignochinTeilenbereitsveröffentlichtworden.DaselektronischeExemplarstimmtmitdenanderenExemplarenüberein.
Stuttgart,20.08.2017
XinleiMa
Declaration
HerebyIdeclare,XinleiMa,whichthepresentworkandthesharesmarkedwithmynamewerewrittenindependentlyandonlytheindicatedsourcesandtoolswereused.Thequotationsandreferenceshavebeendulyacknowledgedintheconcernedplaces.
Theworkhasnotbeenthesubjectofanyotherexaminationprocedure,eitherwhollyorinparts.Furthermore,ithasnotbeenpublishedeithercompletelyorinpart.Theelectroniccopyagreeswiththeothercopies.
Stuttgart,20.08.2017
XinleiMa
Content
AbstractIII
AbbreviationsIV
SymbolsV
ListofFiguresVII
ListofTablesIX
1Introduction1
1.1GeneralResearchBackgroundandImplication1
1.2ResearchMethod–ComputationalFluidDynamicsNumericalSimulation(CFD)2
1.3CurrentSituationofCFDAutomotiveResearch3
1.4TheResearchContent4
2CFDFundamentalTheory5
2.1CFDFundamentalTheory5
2.1.1FluidDynamicGoverningEquations5
2.1.2ABriefIntroductiontotheGridinCFD6
2.1.3NumericalSolutioninCFD7
2.1.4ABriefIntroductiontoTurbulence7
2.2TheProcessandCharacteristicsoftheOutflowFieldSimulation8
2.2.1TheProcessoftheOutflowFieldSimulation8
2.2.2TheCharacteristicsoftheOutflowFieldSimulation9
3TheSimulationontheAhmedBody10
3.1NumericalSimulationwithPowerFlow10
3.2AhmedBodyModel12
3.3SimulationEnviroment15
3.4GridGenerationandVRlevels16
4ResultandDiscussion18
4.1Streamlinesoftime-averagedvelocityintheWakeFlow18
4.2VelocityProfiles23
4.3TheInfluenceofResolutiononSimulationResults27
5Conclusions30
6Literature31
Appendix33
A.1ExamplesummaryinPowerFlow33
A.2CalculationcontentsinPowerFlow40
Abstract
Theautomobileindustryisdevelopingrapidly,thecarownershipisrisingsofast.Thegreatquantityofthevehiclesnotonlyconsumesthelargeamountofthepetroleumreserve,butalsotheenvironmentalpollutionproblemsaremuchmoreserious.Underthebackgroundoftheenergyconservationandtheenvironmentalprotection,thedemandofautomobileenergysavingandconsumptionisurgent.Theenergyconsumptionfromthevehicleislargelytoovercometheairresistanceduringthedriving,whichmakestheautomobileaerodynamicresearchbecomeoneofthehotspots.
Theapplicationofnumericalsimulationbasedoncomputationalfluiddynamics(CFD)isbecomingmoreandmorepopularinthestudyofautomobileflowfield.Comparingwiththewindtunneltest,thenumeriacalsimulationmethodhastheadvantagesoflowcostandshortcycle.
Theairresistancefromthevehicleislargelyduetothevorticesgeneratedbythetail.Therefore,thetailairflowundertheeffectivecontrollingbecomesthekeytothedragreduction.
InthisthesisthecommercialcomputationalfluiddynamicssoftwarePowerFlowisused,therewedotheresearchaboutthenumericalsimulationoftheflowfieldaroundtheAhmedbodyunderthedifferentaccuracyofthesimulationonthetailoftheAhmedbody,wecollectandcomparethedatatoexplorethepriciplesoftheairresistanceofthesquarebackonAhmedbody.Mesurethesteamlineofthetime-averagedvelocityandvelocityprofileatdifferentwakelocationwithdifferentresolutioncases.Findouttheinfluenceoftheresolutiononthesimulationwiththecomparisonwiththeexperimentdata.Summarizetheeffectofsimulationresultsunderdifferentaccuracy.
Abbreviations
CFD
ComputationalFluidDynamics
RSM
ReynoldsStressModel
DNS
DirectlyNumericalSimulationmethod
LBM
Lattice-Boltzmann-Method
NS-CFD
Navier-StokesComputationalFluidDynamicsmethods
UDDS
UrbanDynamometerDrivingSchedule
FDM
FiniteDifferenceMethod
FEM
FiniteElementMethod
FVM
FiniteVolumeMethod
CAD
ComputerAidedDesign
RANS
Reynolds-AveragedNavier-Stokessolver
VR
VariablesResolution
FeV
FinestregionofVoxels
FeS
FinestregionofSurfels
PIV
ParticleImageVelocimetry
LES
LargerEddySimulation
Symbols
Volumen
Density
Time
Thetotaldragcoefficientincludingfrictionalresistancecoefficientanddifferentialpressureresistancecoefficient
Thetotalfrictionalresistancecoefficient
Thefrontenddifferentialpressurecoefficient
Thedifferentialpressurecoefficientoftheverticalplaneofthetail
Thedifferentialpressurecoefficientofthetailslope
Free-streamvelocity
Taylormicroscale
Minimalcellsize
Reynoldsnumber
∆t
Onetimestepinseconds
Averaged-time
ElapsedtimethroughtheAhmedbodylength
y*
Thedistancefromthecentertothetoptrailingedge
ListofFigures
Figure1.1Theproportionofpneumaticresistancetototalresistance1
Figure2.1Thesketchmapsofthegrid7
Figure2.2Themeasuredvelocityatapointinaturbulentflow7
Figure2.3CFDBasicFlowDiagram8
Figure3.1Theelementsinthelattice10
Figure3.2TheoreticalApproachesofDIGITALPHYSICSandTraditionalCFD11
Figure3.3ThebasicdimensionsoftheAhmedmodel13
Figure3.4ThedragcoefficientsoftheAhmedbodyfrom0-40angle14
Figure3.5Theexperimentset-up15
Figure3.6ThemeshmodebyANSA16
Figure3.7DifferentVRlevelsaroundtheAhmedbodymodel17
Figure4.1ComparisonbetweenexperimentalPIVdataandthesimulationdatainthelongitudinalsymmetricalplane.(a)time-averagedPIV;(b)time-averagedLES;(c)time-averagedPowerFlow19-20
Figure4.2ThevorticeslocationsinPowerFlowsimulation21
Figure4.3Theboundarylayerdevelopedbetweenthevortices21
Figure4.4SurfacestreamlineshowingtheconvergentpointN22
Figure4.5Thevorticesweregeneratedaroundthesquareback22
Figure4.6Comparisonofthetime-averagedstreamwisevelocitycomponent,ufordifferentlocationsinwake.Shearlayerprofile(0.03H)downstreamofthetoptrailingedge.y∗=y+0.5H23
Figure4.7Comparisonprofileat(a)0.17Hdownstream(b)0.34Hdownstream(c)0.5Hdownstream(d)0.67Hdownstream(f)0.84Hdownstream24-26
Figure4.8Streamwisevelocitydistributionwirhfinestresolution27
Figure4.9(a)SteamwiseVelocityDistributionChangewiththedifferentgridsize(b)VelocityProfileDistributionChangewiththedifferentgridsize27-28
ListofTables
Table 3.1:
Numberoflatticesandcomputationaleffortassociatedwiththeresolution17
Table4.1:
Differentresolutionwithtotalsimulationtime28
1Introduction
1.1GeneralResearchBackgroundandImplication
Automotiveaerodynamicsisthesicencethatstudiestheinteractionbetweenthevehiclesandair.Asoneimportantperformanceofthevehicles,theaerodynamicscharacteristicsofthevehicleshasthegreatrelationwiththevehiclefueleconomy,controllingstability,safetyandcomfort.Especiallyundertheageoftheenergyconservationandtheenvironmentalprotection,thereisagreatvaluableapplicationinreducingfuelconsumptioninautomotiveaerodynamicsfield.
Thefigure1.1showstheproportionofpneumaticresistancecomparedtototalresistance.Atthevehiclespeed80km/h,thepneumaticresistanceisalmostequaltotherollingdynamicresistace;atthevehiclespeed150km/h,thepneumaticresistanceisequivalenttothe2~3timesoftherollingdynamicresistance[1].
Figure1.1Theproportionofpneumaticresistancetototalresistance
Thus,thereductionoftheaerodynamicdragissignificantforreducingthetotalresistanceofthevehicle,whichcangreatlyreducefuelconsumption.
Thepneumaticresistanceofthevehicleismainlydividedintotwoparts;pressureresistanceandfrictionresistance.TheGermanProfessorS.R.Ahmedresearchshowsthatforagroundvehicleshapebluntbodymodel-Ahmedbodymodel,thediffentialpressureresistanceisasmuchas85%ofthetotalresistance,therestisthefrictionresistance;onlythe9%ofthediffentialpressureresistanceisproducedfromthefront,mostofthediffentialpressureresistancearegeneratedbythetail[2].
Insummary,wehavethereasontobelievethatthekeyofthereductionoftheenergy-efficientvehicleistoreducethevehicle'saerodynamicdragandthecoreofthereductionofthepneumaticresistanceistosuppressthediffentialpressureresistancebytail.
1.2ResearchMethod–ComputationalFluidDynamicsNumericalSimulation(CFD)
Atpresent,ourresearchmethodsare:
theoreticalanalysis,roadtest,windtunneltest,computationalfluiddynamicsnumericalsimulation(CFD).
Foralongperiodofyears,thewindtunneltesthasbeenamajortoolforevaluatingthevehicleaerodynamicperformance.However,inrecentyears,thedevelopmentofcomputerhardwareandsoftwaremakespossibleforthehigh-qualityautomoti