文献翻译原文在新材料精密加工的材料去除机制.docx

上传人:b****5 文档编号:4952771 上传时间:2022-12-12 格式:DOCX 页数:6 大小:93.68KB
下载 相关 举报
文献翻译原文在新材料精密加工的材料去除机制.docx_第1页
第1页 / 共6页
文献翻译原文在新材料精密加工的材料去除机制.docx_第2页
第2页 / 共6页
文献翻译原文在新材料精密加工的材料去除机制.docx_第3页
第3页 / 共6页
文献翻译原文在新材料精密加工的材料去除机制.docx_第4页
第4页 / 共6页
文献翻译原文在新材料精密加工的材料去除机制.docx_第5页
第5页 / 共6页
点击查看更多>>
下载资源
资源描述

文献翻译原文在新材料精密加工的材料去除机制.docx

《文献翻译原文在新材料精密加工的材料去除机制.docx》由会员分享,可在线阅读,更多相关《文献翻译原文在新材料精密加工的材料去除机制.docx(6页珍藏版)》请在冰豆网上搜索。

文献翻译原文在新材料精密加工的材料去除机制.docx

文献翻译原文在新材料精密加工的材料去除机制

Materialremovalmechanismsinprecisionmachiningofnewmaterials

Abstract

Modern-dayproductsarecharacterisedbyhigh-precisioncomponents.Awiderangeofmaterials,includingmetalsandtheiralloys,ceramics,glassesandsemiconductors,arefinishedtoagivengeometry,finish,accuracyandsurfaceintegritytomeettheservicerequirements.Foradvancedtechnologysystems,demandsforhigherfabricationprecisionarecomplicatedbytheuseofbrittlematerials.Forefficientandeconomicalmachiningofthesematerials,anunderstandingofthematerialremovalmechanismisessential.Thispaperfocusesonthedifferentmaterialremovalmechanismsinvolvedinmachiningofbrittlematerials.2001PublishedbyElsevierScienceLtd.

Keywords:

Brittle;Defects;Ductility;Materialremoval;Precisionmachining

1.Introduction

Ultra-precisionmachiningtechnologyhasbeendevelopedoverrecentyearsforthemanufactureofcost-effectiveandquality-assuredprecisionpartsforseveralindustrialapplicationssuchaslasers,optics,semiconductors,aerospaceandautomobileapplications.Precisionmanufacturingdealswiththerealisationofproductswithhighshapeaccuracyandsurfacequality.Theaccuracymaybeatthenanometriclevel.Severalmachiningtechniquescanbementionedherelikediamondturning,grinding,lapping,polishing,honing,ionandelectron-beammachining,lasermachining,etc.EfficientoverviewsoftheprocessesaregiveninRefs.[1–3].

Ultra-precisionmachiningtechnologyhasbeenhighlydevelopedsincethe1980smainlybecauseofitshighaccuracyandhighproductivityinthemanufacturingofoptical,mechanicalandelectroniccomponentsforindustrialuse.Formanyadvancedtechnologysystems,higherfabricationprecisioniscomplicatedbytheuseofbrittlematerials.Thepastdecadehasseenatremendousresurgenceintheuseofceramicsinstructuralapplications.Theexcellentthermal,chemicalandwearresistanceofthesematerialscanberealisedbecauseofrecentimprovementsintheoverallstrengthanduniformityofadvancedceramics[4].

Ceramicmaterialshavebeenwidelyadaptedasfunctionalmaterialsaswellasstructuralmaterialsinvariousindustrialfieldsandtheirapplicationtoprecisionpartsisalsoincreasing[5].

However,thehighdimensionalaccuracyandgoodsurfacequalityrequiredforprecisionpartsarenotnecessarilyobtainedbytheconventionalformingandsinteringprocessofceramicpowders.Thusprecisionfinishingoftheceramicsafterformingandsinteringisrecognisedasakeytechnologytoprecisionceramicparts[6].

Thequantityofceramicmaterialtoberemovedbythefinishingprocessmustbeverysmall,sothatmicrocracksdonotremainonthefinishedsurface.Abrasiveprocessessuchasgrindingorlappingwithdiamondabrasiveshavegenerallybeenadoptedforprecisionfinishingofceramics[7–9].

However,itisexpectedthatbettersurfaceintegrityandhigherproductionratescanberealisedbycuttingprocesses.Comparedwithotherprocesses,cuttingisalsoadvantageousinmachiningcomplexshapes.Brittlematerialscanbedividedintothreegroups:

amorphousglasses,hardcrystalsandadvancedceramics.Advancedceramicsareamoderndevelopment.Theyaremadefromfineporousparticlesthatareformed,consolidatedandthermallytreatedunderpreciselycontrolledconditions.Useofthesematerialsenablesdevelopmentofhigh-technologydevicesandsystemsthatsimplycouldnotbeproducedotherwise[10].

Thesamestatementcouldbemadeabouttheuseofcertaincrystallinematerials(e.g.,semiconductors)andadvancedhigh-temperatureglasses.

2.Ductileregimemachining

Improvementsinmachiningtoleranceshaveenabledresearcherstoexposetheductilematerialremovalofbrittlematerials.Undercertaincontrolledconditions,itispossibletomachinebrittlematerialslikeceramicsusingsingle-ormulti-pointdiamondtoolssothatmaterialisremovedbyplasticflow,leavingacrack-freesurface(Fig.4).Thisprocessiscalledductileregimemachining.

Ductileregimemachiningfollowsfromthefactthatallmaterialswilldeformplasticallyifthescaleofdeformationisverysmall.AnotherwayofviewingtheductileregimemachiningproblemisthatdescribedbyMiyashita[17],asshowninFig.5.Thematerialremovalratesforgrindingandpolishingarecomparedandthereisagapinwhichneithertechniquehasbeenutilised.Thisregioncanbetermedthemicro-grindinggapsincetheregionliesinbetweengrindingandpolishing.Thisgapisimportantbecauseitrepresentsthethresholdbetweenductileandbrittlegrindingregimesforawiderangeofmaterialslikeceramics,glassesandsemiconductors.

2.1.Principleofductileregimemachining

Thetransitionfrombrittletoductilemodeduringmachiningofbrittlematerialsisdescribedintermsoftheenergybalancebetweenstrainenergyandsurfaceenergy[18].Localisedfracturesproducedduringapplicationofloadareofinterestinmachiningofbrittlematerials.Machiningisanindentationprocessduringwhichindentationcracksaregenerated,andthesecracksplayanimportantroleinductileregimemachining[19].

Acriticalpenetrationdepthdcforfractureinitiationisdescribedasfollows[20]

whereKcisthefracturetoughness,Histhehardness,Eistheelasticmodulusandbisaconstantwhichdependsontoolgeometry.Fig.6showsaprojectionofthetoolperpendiculartothecuttingdirection.Accordingtotheenergybalanceconcept,fracturedamagewillinitiateattheeffectivecuttingdepthandwillpropagatetoanaveragedepthyc.Ifthedamagedoesnotcontinuebelowthecutsurfaceplane,ductileregimeconditionsareachieved.Thecross-feedfdeterminesthepositionofdcalongthetoolnose.Largervaluesoffmovedcclosertothetoolcentreline.Anotherinterpretationofductiletransitionphenomenaisbasedoncleavagefractureduetothepresenceofdefects[21].Thecriticalvaluesofacleavageandplasticdeformationareaffectedbythedensityofdefects/dislocationsintheworkmaterial.Sincethedensityofdefectsisnotsolargeinbrittlematerials,thecriticalvalueoffracturedependsonthesizeofthestressfield.Fig

7showsamodelofchipremovalwithsizeeffects.Whentheuncutchipthicknessissmall,thesizeofthecriticalstressfieldissmalltoavoidcleavage.Consequentlyatransitioninthechip

2.2.Materialremovalmechanismsinductileregimemachining

Machininggeneratesausefulsurfacebyintimatecontactoftwomatingsurfaces,namelytheworkpieceandabrasivetool.However,themicromechanismsofmaterialremovaldifferfrommaterialtomaterialdependinguponthemicrostructureofbothworkpieceandtoolmaterial.

Generally,duringhigh-precisionmachiningofbrittlematerials,toolshavinglargenegativerakeanglesareused(ashighas-30︒).Thenegativerakeangleprovidestherequiredhydrostaticpressureforenablingplasticdeformationoftheworkmaterialbeneaththetoolradius.Duringconventionalmachiningwithasingle-pointtool,therakeanglewillbepositiveorcloseto0︒.Withpositiverakeangle,thecuttingforcewillgenerallybetwicethethrustforce.Hencethedeformationaheadofthetoolwillbeinaconcentratedshearplaneorinanarrowplaneasshown

inFig.8.Duringthegrindingprocess,itisgenerallyagreedthatthetoolwillhavealargenegativerakeangleandalsothatthecuttingforceisabouthalfofthethrustforce[Fig.8(b)].Inultraprecisionmachiningofbrittlematerialsatdepthsofcutsmallerthanthetooledgeradius,thetoolpresentsalargenegativerakeangleandtheradiusofthetooledgeactsasanindenterasshowninFig.8(c).Thisrepresentsindentationslidingofabluntindenteracrosstheworkpiecesurface.ThisissimilartoasituationwherethetoolisrigidlysupportedandcutstheworkpieceunderastresssuchthatnomedianventsaregeneratedbutthematerialbelowthetoolisplasticallydeformedduetolargehydrostaticpressureasinFig.8(d).

3.Materialremovalinglassandceramics

Theductilegrindingofopticalglassisconsideredasthemostperfectadaptationofamachiningmethodtothematerial[22].Glassisaninorganicmaterialsupercooledfromthemoltenstatetothesolidstatewithoutcrystallising.Glassesarenon-crystalline(oramorphous)andrespondintermediatebetweenaliquidandasolid;i.e.,atroomtemperaturetheybehaveinabrittlemanner

1838P.S.Sreejith,B.K.A.Ngoi/InternationalJournalofMachineTools&Manufacture41(2001)1831–1843

butabovetheglasstransitiontemperatureinaviscousmanner.Thehighbrittlenessofglassisduetotheirregulararrangementofatoms.Incrystallinematerialslikemetals,theatomshaveafixedarrangementandregularitydescribedbyMillerindices,whereasglassstructuredoesnotshowanydefiniteorientation[23].

Theuniquephysicalandmechanicalpropertiesofceramicssuchashardnessandstrength,chemicalinertnessandhighwearresistancehavecontributedtotheirincreasedapplicationinmechanicalandelectricalcomponents.Theadvancedceramicsforstructuralandwearapplicationsincludealumina(Al2O3),siliconnitride(Si3N4),siliconcarbide(SiC),zirconia(ZrO2)andSiAlON.ThenatureofatomicbondingdeterminesthehardnessofthematerialaswellastheYoung’smodulus.Forductilemetallic-bondedmaterialstheratioE/Hisabout250,whileforcovalentbondedbrittlematerialstheratioisabout20.Theratiowilllieinbetweenthesevaluesforionicbondedmaterials.Lowdensityandlowmobilityofdislocationsarethereasonsforthehighhardnessofsomeofbrittlematerials.

4.Gentlegrinding

Thereisanalternativehypothesiscalled“gentle”machiningwhereinitisbelievedthatplasticdeformationisnotinvolvedexclusi

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高等教育 > 军事

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1