1250m3高炉可行性研究报告.docx

上传人:b****3 文档编号:4834728 上传时间:2022-12-10 格式:DOCX 页数:134 大小:205.71KB
下载 相关 举报
1250m3高炉可行性研究报告.docx_第1页
第1页 / 共134页
1250m3高炉可行性研究报告.docx_第2页
第2页 / 共134页
1250m3高炉可行性研究报告.docx_第3页
第3页 / 共134页
1250m3高炉可行性研究报告.docx_第4页
第4页 / 共134页
1250m3高炉可行性研究报告.docx_第5页
第5页 / 共134页
点击查看更多>>
下载资源
资源描述

1250m3高炉可行性研究报告.docx

《1250m3高炉可行性研究报告.docx》由会员分享,可在线阅读,更多相关《1250m3高炉可行性研究报告.docx(134页珍藏版)》请在冰豆网上搜索。

1250m3高炉可行性研究报告.docx

1250m3高炉可行性研究报告

 

鞍山宝得钢铁有限公司

升级改造工程1250m3高炉项目

可行性研究报告

咨703.01

 

中冶华天南京工程技术有限公司

二○一七年三月

 

鞍山宝得钢铁有限公司

升级改造工程1250m3高炉项目

可行性研究报告

咨703.01

 

副总经理:

公司首席专家:

总设计师:

 

中冶华天南京工程技术有限公司

二○一七年三月

 

附图

 

1总论

1.1项目名称及建设地点

项目名称:

鞍山宝得钢铁有限公司升级改造工程1250m3高炉项目。

建设地点:

辽宁省鞍山市千山区鞍腾路1号鞍山宝得钢铁有限公司。

1.2报告编制依据

1)《钢铁行业规范条件》(2015年修订)。

2)《关于鞍山市后英集团等3户钢铁企业新建炼铁高炉项目产能置换方案的公告》。

3)鞍山宝得钢铁有限公司升级改造工程1250m3高炉项目设计委托书。

4)鞍山宝得钢铁有限公司提供的设计基础资料。

5)国家、地方及行业的有关标准、规范和规定。

1.3企业概况

鞍山宝得钢铁有限公司地处辽宁省鞍山市,是以型材为主导产品的大型钢铁联合企业,全国地方重点工业企业之一,ISO9001质量管理体系及ISO14000环境管理体系认证企业。

截止到2016年底,企业占地近140万平方米,共有员工3000人,总资产?

亿元,年销售收入近?

亿元。

企业目前拥有180m2烧结机1台,?

m2竖炉1座,450m3高炉2座,?

吨转炉?

座,?

万吨型材生产线?

条等设备,主要设备年生产能力为烧结矿200万吨、球团矿200万吨、炼钢生铁110万吨、钢坯?

万吨、型材?

万吨。

企业主要产品为七大钢种、九个系列、150余个规格的“宝得”牌型材(H型钢、工字钢、槽钢、等边角钢、不等边角钢等),被评为辽宁省名牌产品。

其中,船用等边、不等边角钢通过中国船级社(CCS)工厂生产认可,不等边角钢系列产品荣获国家冶金局冶金产品实物质量“金杯奖”。

1.4项目建设必要性

根据国家《钢铁行业规范条件》(2015年修订)的规定,现有钢铁企业高炉容积要求>400m3,建设、改造钢铁企业高炉容积要求≥1200m3,其他均为需淘汰的落后工艺装备。

鞍山宝得钢铁有限公司炼铁厂现有2座450m3高炉,虽暂时不属于需淘汰的落后工艺装备,但也非常接近,同时2座450m3高炉也已生产多年,故有必要淘汰现有2座450m3高炉,进行升级改造新建1座满足国家产业政策要求的新高炉。

按照2017年3月17日辽宁省政府《关于鞍山市后英集团等3户钢铁企业新建炼铁高炉项目产能置换方案的公告》批示,鞍山宝得钢铁有限公司受让海城市恒盛铸业有限公司淘汰5.4万吨/年高炉产能,加上原有110万吨/年高炉产能,共计现有115.4万吨/年高炉产能,可新建1座1250m3高炉,年产炼钢生铁115万吨,从而实现炼铁高炉减量产能置换,符合现行国家政策要求。

而且公告要求,现有2座450m3高炉拟淘汰时间为2019年12月31日。

综上所述,1250m3高炉项目宜早日建成,早日见效。

1.5报告编制原则

1)以提高企业经济效益为中心,建设项目的各项技术经济指标达到国内同类企业先进水平。

2)采用先进、成熟、可靠和实用的工艺技术和装备,尽可能立足于国内,节省工程投资。

3)总图布置以现有厂区条件为依托,厂区用地做到布置紧凑,物料流向合理,尽量节省投资。

4)重视环境保护和节约能源,确保职业安全卫生和消防,实现“三废”综合治理和回收利用。

1.6报告编制范围

本研究报告包括1250m3高炉及其配套辅助设施,其喷煤设施、铸铁机系统及公用设施均利用现有。

1.7建设条件

1.7.1厂址条件

根据厂区条件,拟建1250m3高炉炼铁厂选址在新现有转炉炼钢车间的西北侧,该地块为厂区内部现有空地,不需另行征地。

1.7.2运输条件

拟建1250m3高炉炼铁厂选址四周已形成完善的厂区道路,高炉运量增加不会造成现有道路的运输压力,只需规划建设好其内部运输道路即可。

1.7.3能源介质供应条件

本项目所需介质包括蒸汽、氧气、氮气、高炉煤气等。

蒸汽、氧气、氮气由全厂公辅设施通过管网供给;高炉煤气由高炉自产煤气供应,多余部分经综合管网外供。

1.7.3供电条件

高炉区需4路10kV高压电源,其中2路10kV高压电源专供鼓风机,2路10kV高压电源供循环水泵房高压配电室,中控高配室及矿槽高配室电源引自循环水泵房高配。

以上电源均引自煤气柜西区66kV变电所。

1.7.4给排水条件

工业净化水由厂区的净化水站提供,由厂区供水管网送至高炉相关循环水泵房;高炉内部用水由炼铁区域内相关循环水泵房提供。

厂区生产消防水、生活水均接自厂区相应给水管。

厂区生产废水及雨水排水系统采用分流制,排入厂区统一管网。

厂区内厕所排放的粪便生活污水经改良式化粪池初步处理后,排入厂区统一管网。

1.7.5原燃料供应条件

烧结矿由烧结厂提供,采用胶带机运送至槽前转运站;球团矿由球团厂提供,采用胶带机运送至原料场地下受料槽;落地烧结矿、杂矿及焦炭由原料场提供,通过铲车或汽车运至地下受料槽;原煤由汽车送至现有喷煤干煤棚。

1.8建设规模及物料平衡

鞍山宝得钢铁有限公司升级改造工程拟建1座1250m3高炉,年产炼钢生铁115万吨。

项目各种物料消耗及产出见平衡见图1-1。

图1-1:

1×1250m3高炉物料平衡图(单位:

104t/a)

2炼铁工艺

2.1技术特点

1)双排矿槽,胶带机上料,槽下物料分散筛分、分散称量,回收焦丁、矿丁。

2)采用成熟、可靠的国产串罐无料钟炉顶装料设备,减少炉料装入过程中的偏析。

3)炉底、炉缸采用陶瓷杯与炭砖相结合的复合结构。

4)全炉身冷却壁结构,炉缸、炉身上部镶砖球墨铸铁冷却壁,炉身中部镶砖铸钢冷却壁,炉腹、炉腰、炉身下部采用镶砖铜冷却壁。

高炉本体冷却壁、风口中套和炉底水冷管采用软水闭路循环冷却系统。

5)设两个矩形平坦化出铁场,每个出铁场设1个铁口,采用贮铁式主沟,紧凑式渣铁沟布置;摆动溜嘴、液压泥炮和液压开铁口机,炉前操作机械化水平高、环境好。

6)高炉熔渣采用炉前水淬、底滤法水渣处理工艺。

7)每座高炉配3座顶燃式热风炉。

新型旋流式陶瓷燃烧器,各孔口采用组合砖,热风炉系统管路设各种波纹补偿器,空、煤气双预热,热风温度最高达1250℃。

热风阀、倒流休风阀冷却采用独立的软水密闭循环系统。

8)喷煤利用现有设施。

喷吹系统采用4罐并罐喷吹、炉前单管路加分配器。

喷吹能力正常150kg/tHM,最大180kg/tHM。

9)所有产灰尘点,均设有抽风除尘装置,排放均达国家要求;车间用水除蒸发外,均循环使用,无外排污水。

2.2车间组成

●原料供应

●矿槽及上料设施

●炉顶设施

●高炉本体

●热风炉系统

●风口平台及出铁场

●炉渣处理设施

●粗煤气系统

●喷煤设施(利用现有,仅喷吹管线)

●铸铁机系统(利用现有)

●煤气净化系统

●高炉煤气脱盐设施(预留位置)

●富氧设施(同时考虑机前及机后)

●BPRT鼓风机站(备用风机利用现有2台AV45-13风机并联送风)

●中心循环水泵房

●冲渣泵房

●通风除尘设施

●主控楼

●供配电设施

●总图运输及综合管线

2.3原、燃料

2.3.1高炉对原燃料要求

高炉所使用的原燃料包括烧结矿、球团矿、杂矿和焦炭,这些物料分别由本公司的烧结厂、球团厂、原料场经胶带机运送到高炉贮矿槽,经筛分、称量后,按上料程序通过胶带机加到炉顶料罐,再装入高炉内。

原燃料是高炉冶炼的基础,直接影响高炉生产的技术经济指标,因此须对入炉物料有严格的要求。

原燃料参考条件的要求见表2-1、表2-2、表2-3、表2-4。

表2-1:

烧结矿质量要求

序号

项目

单位

数值

1

全铁TFe

%

≥56

2

铁分波动

%

±0.5

3

碱度波动

%

≤±0.08

4

铁分和碱度波动的达标率

%

≥80

5

FeO

%

≤9.0

6

FeO波动

%

≤±1.0

转鼓指数(﹢6.3mm)

%

≥68

粒度范围

其中:

>50mm

<5mm

mm

%

%

5-50

≤8

≤5

表2-2:

球团矿质量要求

序号

项目

单位

数值

1

全铁TFe

%

≥63

2

转鼓指数

%

≥86

3

耐磨指数-0.5mm

%

≤5

4

常温抗压强度

N/个球

≥2000

5

低温还原粉化率+3.15mm

%

≥65

6

膨胀率

%

≤15

7

铁分波动

%

±0.5

8

粒度范围:

其中:

<6mm

9~18mm

mm

%

%

6-18

≤5

≥85

表2-3:

焦炭质量要求

序号

项目

单位

数值

1

转鼓指数

M40

%

≥82

M10

%

≤7.5

2

反应后强度CSR

≥60

3

反应性指数CRI

≤26

4

灰分

%

≤13

5

%

≤0.7

6

粒度范围

其中:

>75mm

<25mm

mm

%

%

25-75

≤10

≤8

表2-4:

入炉原、燃料有害元素控制值(kg/tHM)(GB50427)

序号

项目

数值

1

K2O+Na2O

≤3.0

2

Zn

≤0.15

3

Pb

≤0.15

4

As

≤0.10

5

Cl-

≤0.6

6

S

≤4.0

2.3.2炉料结构与用量

2.3.2.1炉料结构

烧结矿:

75%

球团矿:

25%

含铁原料的综合品位TFe:

≥57%

吨铁含铁原料理论需要量:

1684kg/tHM

2.3.2.2各种原燃料需要量(见表2-5)

表2-5:

高炉各种原燃料需要量

名称

吨铁理论需要量

(kg/t-HM)

年理论需要量

(×104t/a)

年实际需要量

(×104t/a)

备注

烧结矿

1262

145.3

165.1

按粉料12%

球团矿

421

48.4

51.0

按粉料5%

焦炭

365

42.0

45.2

干基,碎焦7%

煤粉

150

17.3

17.3

干基

杂矿

7

0.8

2.4操作条件、设计指标及工艺流程

2.4.1操作条件

1)送风条件

鼓风机风量:

年平均2797Nm3/min;最大3356Nm3/min

鼓风机出口压力:

0.4MPa(表压)

冷风温度:

180~220℃

热风温度:

1200~1250℃

2)富氧量:

~3%

3)喷煤量:

150kg/tHM,Max.180kg/tHM

4)各种阻损及炉顶压力

送风系统管道阻损:

~0.03MPa

料柱阻损:

0.13MPa

炉顶压力:

0.20MPa,Max.0.24MPa

5)熟料率:

100%

6)含铁料综合品位:

≥57%

2.4.2主要设计指标

表2-6:

高炉主要设计指标表

序号

名称

单位

设计参数

备注

1

高炉有效容积

m3

1250

2

利用系数

t/m3·d

2.63

3

日产生铁

t/d

3288

4

年产生铁

万吨/年

115

5

焦比

kg/tHM

365

6

煤粉比

kg/tHM

150

Max.180

7

渣铁比

kg/tHM

350

8

炉顶压力

kPa

200

Max.240

9

富氧率

1~3

10

风温

1200~1250

11

烧结矿使用率

75

12

球团使用率

25

13

年工作日

d

350

14

一代炉龄

a

12

2.4.3工艺流程及平面布置

2.4.3.1工艺流程

贮存在矿、焦槽内的不同物料,根据高炉操作要求,在槽下分别进行筛分称量后,由槽下主胶带机经上料主胶带机送到炉顶料罐,筛下的碎焦、碎矿再进行二次筛分,回收焦丁、矿丁,筛下的粉焦、粉矿在槽下粉料仓临时贮存后通过汽车外运;根据装料制度要求,炉顶料罐内的焦炭或矿石经料流调节阀、中心喉管、布料溜槽将物料均匀的布到炉内。

生产的铁水采用140t铁水罐车一罐到底由铁路送往炼钢厂,高炉熔渣通过“底滤法”处理后,然后通过汽车外运。

高炉荒煤气经过重力除尘器后,送到煤气净化系统进行精除尘后送到公司煤气管网和热风炉。

热风炉燃烧用的助燃空气和高炉煤气通过热风炉废气预热后用于烧炉,高炉所需风量由鼓风机房送到热风炉,进行热交换后达到1200~1250℃送到高炉内。

其生产工艺流程见图2-1。

2.4.3.2平面布置

高炉与炼钢采用直连式布置,双排矿焦贮槽胶带机上料方式;设平坦式矩形双出铁场,每个出铁场设置1个铁口,对应每个铁口设置1个摆动流嘴,采用140t铁水罐车铁路输送方式运送铁水,一罐到底;“底滤法”炉渣滤水处理装置,水渣脱水后直接由汽车外运。

图2-1:

炼铁工艺流程图

2.5主要工艺设施配置

2.5.1上料设施

上料设施内容包括原燃料贮槽、槽下设备、上料上料皮带通廊和返料处理设施。

2.5.1.1矿、焦槽的布置

高炉所用原燃料包括烧结矿、球团、杂矿和焦炭等,这些物料分别由公司的烧结厂、球团厂、原料场经胶带机运送到高炉贮料槽。

高炉料槽为双排布置,共设22个供料贮槽,焦槽贮存时间~12.7h,烧结矿槽贮存时间~17.6h。

槽下各种物料除杂矿外均设置分散筛分、分散称量,按上料程序通过槽下主胶带机和上料主胶带机接力方式加到炉顶料罐。

各种碎矿经过筛分,矿丁贮存在矿丁仓供高炉,筛下的矿粉贮存在矿粉仓内,然后经汽车外运;碎焦经过筛分,焦丁贮存在焦丁仓供高炉,筛下的焦粉贮存在焦粉仓内,然后经汽车外运。

在每个粉料仓下部均配置有作为汽车装料的电液动闸门。

2.5.1.2上料设施设备选择

上料设施设备选择主要满足高炉生产,以及在特定情况下赶料能力的要求。

其主要设备是矿(焦)仓闸门、振动给料机、振动筛、称量斗、胶带机以及为称量斗液压闸门驱动配置的液压站等,这些设备要求能力充足、运行可靠。

1)振动筛:

振动筛要求筛分效率高、处理能力大。

烧结矿选用的矿石振动筛处理能力为400t/h,焦炭选用的振动筛处理能力为200t/h。

2)称量斗:

有效容积8.5m3,配电子秤,液动闸门。

称量漏斗与振动筛平台采用完全脱开的布置方式,避免了振动筛振动对称量系统的影响。

方便使用电子磅校称,称量斗传感器处作龙门架。

3)胶带机:

高炉槽下至高炉炉顶的所有物料的输送均为胶带机。

根据计算和生产实践,本设计选用的主胶带机为B=1400mm,v=2.0m/s,输矿能力Q=2000t/h,输送焦炭能力Q=630t/h,上料主胶带机的传动装置采用3用1备的工作方式,确保胶带机运行的可靠性。

槽下主胶带电机采用1用1备驱动方式。

上料主胶带机设防倒滑装置。

槽下所有粉料运输选用的普通胶带机均为B=800mm,v=1.0m/s;大倾角胶带机为B=800,V=1.6m/s。

2.5.1.3上料设施检测与控制

上料设施的检测是称量和料位,各种称量斗的称量是根据上料程序要求进行的。

另外,焦炭、矿石采用称量自动补偿以消除称量误差的影响,焦炭水份补偿暂按人工检测,然后输入计算机进行。

在各种贮矿槽设置雷达料位计来监控槽位情况,在槽下重点部位设置电视监控设备作业情况。

上料设施设备的操作可以实现自动控制或通过计算机单机手动,同时,为了现场检修,设置有机旁手动操作。

2.5.2炉顶装料设施

高炉炉顶由炉顶装料设备,料罐均排压设施,炉顶液压站,润滑站,炉顶溜槽传动齿轮箱的水冷气封设施,炉顶探尺,检修设施及炉顶框架所组成。

采用串罐式无料钟炉顶设备。

2.5.2.1串罐无料钟炉顶设备主要性能

串罐无料钟炉顶装料设备主要由受料斗、料罐、阀箱、布料溜槽及其传动齿轮箱等部分组成,受料斗及料罐有效容积30m3。

2.5.2.2炉顶结构与布置

炉顶装料设备为自立结构,受料斗支撑在炉顶平台上,料罐通过四根支柱组成的小框架支承于炉顶外封罩上,布料溜槽及其传动齿轮箱、探尺直接支于封罩上。

炉顶框架14m×8m,炉顶大平台上设置有均压用的N2罐和炉顶设备液压站及干油润滑站。

四根煤气上升管支撑在炉顶大平台上。

炉顶大框架布置在四根煤气上升管的内侧。

在料罐平台下设有齿轮箱、下阀箱、布料溜槽的安装检修梁。

均排压设施支撑在炉顶框架上。

2.5.2.3均排压及探尺设施

料罐均压分两步进行,先用净煤气一次均压,再用N2二次均压。

设置放散煤气除尘及回收系统(中冶华天专利技术),保证煤气净化后放散,且回收的煤气达到煤气总放散量的80%以上。

炉顶设置二台整体式机械探尺和1台雷达探尺,机械探尺的探测深度为0~6m,最大15m。

另外,在炉顶封罩上还设置有2台红外摄像仪,1台来观察溜槽运转,1台用来炉喉料面情况并分析炉喉温度。

2.5.2.4炉顶辅助设备

炉顶辅助设备主要有炉顶起重机、检修吊装设备及专用拆卸工具。

炉顶选用32/5t起重机,用于检修安装炉顶设备。

为方便炉顶设备的检修,在料罐平台下设有检修梁,布料溜槽的拆卸设有专用工具。

2.5.3高炉本体

2.5.3.1高炉内型特点

高炉内型主要与原燃料条件和操作制度有关,合理的内型有利于高炉操作运行、高产低耗。

本高炉炉型其特点如下:

1)高炉有效容积1250m3,设22个风口,2个铁口,无渣口。

2)内型适当矮胖,减小炉身角和炉腹角。

3)在保证炉缸活跃的基础上,保证风口有足够的风口回旋区,有利于煤粉的充分燃烧及改善高炉下部中心焦柱的透气性,有利于改善气体动力学条件。

2.5.3.2炉体结构

高炉本体采用自立式框架结构框架尺寸:

框架间距为17m×17m。

炉体框架与高炉本体完全脱开,它与炉顶框架、煤气上升管连成一体,这部分纵向荷载和热风围管、各层平台以及其上面的设备和管道的所有荷载全部通过四根支柱传给基础。

为了方便炉体设备及供水管道的安装、生产维护管理,风口平台和炉顶大平台之间共设置3层平台。

各层平台之间设有走梯相连。

高炉炉壳在生产过程中不仅承受无料钟炉顶设备、炉料的垂直负荷、炉体设备和耐火材料等的荷载,还承受热应力、炉内气体、炉料横向压力等的作用,因此设计要求采用强度高、焊接性能好的钢板制作炉壳。

在开孔多或大的地方的炉壳(如风口带、铁口区),为弥补开孔造成的强度削弱,采取加厚炉壳的办法。

2.5.3.3高炉内衬

高炉内衬是维护高炉的工作空间,耐火材料的选择,将影响投资和使用寿命。

在本次设计中充分考虑高炉各部位的不同工作条件和侵蚀机理,有针对性的选用耐火材料,并在结构上加强各部位砖衬的稳定性。

1)炉缸、炉底内衬

炉底、炉缸采用“陶瓷杯+炭砖”复合结构。

选用兰炭生产的炭砖,其中炉底第一层为石墨炭块、第二、三层为半石墨质炭块,第四为微孔炭砖、第五层为超微孔炭砖。

陶瓷垫采刚玉莫来石质复合砖。

内侧接触铁水的部位采用刚玉莫来石质复合砖形成陶瓷杯壁;炉缸外侧下部采用超微孔炭砖,炉缸外侧上部采用微孔炭砖。

风口带采用棕刚玉复合组合砖结构,提高风口砌体的稳定性和寿命,有利保护风口设备。

2)炉腹、炉腰、炉身内衬

炉腹、炉腰、炉身中下部冷却壁镶高导热、抗化学侵蚀性能好、高耐磨性能的碳化硅结合氮化硅砖,炉身上部冷却壁镶磷酸盐浸渍粘土砖。

镶砖内侧喷涂一层~50mm厚喷涂料保护层。

3)炉顶煤气封罩上的喷涂层

炉顶煤气封罩上的喷涂层,其锚固件采用龟甲板形式。

喷涂料采用FN-140。

2.5.3.4炉体冷却结构

炉体的冷却结构好坏,直接影响冷却设备的寿命,而冷却设备的寿命是决定高炉寿命最关键的环节之一,特别是从炉腹到炉身下部区域的结构尤为重要。

炉底和炉缸采用5段光面单层水管灰口铸铁冷却壁,冷却壁为直通水管4进4出,2个铁口每个区域的冷却由2块异型铸钢冷却壁组成。

炉腹、炉腰和炉身下部(即第6、7、8、9、10层冷却壁)采用四通道竖向水道全覆盖镶砖铜冷却壁。

炉身中部采用用双层直通水管铸钢全覆盖镶砖冷却壁。

炉身上部采用用单层直通水管球墨铸铁全覆盖镶砖冷却壁。

2.5.3.5冷却水系统

高炉本体冷却壁、风口中套和炉底水冷管采用一次软水闭路循环冷却系统,软水闭路循环水量约3550m3/h;风口小套、炉顶喷水、炉顶摄像装置、炉顶气密箱等采用高压工业净循环水,高压水流量约830m3/h,炉前压力1.2MPa;炉喉钢砖及炉壳晚期喷淋用中压工业净循环水。

2.5.3.6炉体附属设备

炉体附属设备包括送风装置、风口设备、铁口框、炉喉钢砖、炉顶喷水装置、红外摄像装置等。

2.5.3.7炉体监测

为了确保高炉生产稳定、安全、长寿,设置有必须的可靠的监测装置。

内容包括:

1)炉体温度监测:

包括耐材、冷却元件和冷却介质的温度;

2)冷却水流量、温度和压力监测;

3)炉喉导出管煤气压力、温度检测;

4)热风围管上热风压力和温度。

2.5.4热风炉系统

1250m3高炉配3座新型顶燃式热风炉,新型顶燃式热风炉结构稳定,使用寿命长;且投资省、占地面积小;由于散热损失减少且气流分布均匀,因此可以有效的提高风温。

蓄热室采用19孔Φ28mm格子砖,由于单位体积的蓄热面积增加,因此可以减小蓄热室的高度,减少投资。

2.5.4.1热风炉基本设计参数(表2-7)

名称

单位

数值

备注

高炉容积

m3

1250

加热风量

Nm3/min

3300

鼓风压力

MPa

0.40

表压

设计风温

C

≥1200

拱顶温度

C

1320~1400

废气温度

C

300

Max:

450

冷风温度

C

180~220

煤气预热后温度

C

≥180

助燃空气预热后温度

C

≥180

燃料组成

100%BFG

使用寿命

两代炉龄

2.5.4.3热风炉本体

热风炉的燃烧器内层采用高抗热震性砖RT-B(Al2O3≥55%),因为这部分砖需承受周期性的燃烧和送风交替的较大幅度的温度变化。

紧贴内层RT-B砖的燃烧器环道和喷嘴采用致密粘土砖HZN-42。

拱顶和蓄热室上部采用硅砖作为内层耐火层,硅砖具有很好的高温抗蠕变性;采用轻质高铝砖作为隔热层;隔热砖和喷涂层之间设有硅酸铝耐火纤维制品以吸收膨胀和绝热。

蓄热室中部和下部分别采用低蠕变高铝砖(DRL-135)和低蠕变粘土砖(DRN-115)作耐火层,使用轻质粘土砖作隔热层,并和炉壳之间设有硅酸铝耐火纤维制品。

蓄热室格子砖分三段,上部为硅砖,下部为低蠕变粘土砖,中间为低蠕变高铝砖的过渡段。

热风出口采用抗热震性能优异低蠕变高铝砖DRL-145a。

2.5.4.4管道

热风支管、热风总管、热风围管均采用低蠕变高铝砖和高铝质隔热砖砌筑,管壳内表面喷涂不定型耐材,上方砖衬与喷涂料之间充填硅酸铝棉毯,热风管道上各三岔口采用组合砖砌筑。

烟气管道采用管壳内表面喷涂不定型耐材保温。

煤气和预热后助燃空气管道采用外保温方式。

根据各部位的工况条件,热风支管、热风总管以及烟气、冷风、助燃空气、煤气管道上分别设置不同类型的波纹补偿器,以吸收管道的膨胀以及和连接体之间的相对位移。

2.5.4.5热风炉系统主要设备

1)炉箅子及支柱

热风炉炉箅子采用托梁+支柱式支承结构,炉箅子通过托梁和支柱支撑在炉底上,炉箅子

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1