楞次定律的内容及其理解.docx

上传人:b****1 文档编号:461058 上传时间:2022-10-10 格式:DOCX 页数:14 大小:77.76KB
下载 相关 举报
楞次定律的内容及其理解.docx_第1页
第1页 / 共14页
楞次定律的内容及其理解.docx_第2页
第2页 / 共14页
楞次定律的内容及其理解.docx_第3页
第3页 / 共14页
楞次定律的内容及其理解.docx_第4页
第4页 / 共14页
楞次定律的内容及其理解.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

楞次定律的内容及其理解.docx

《楞次定律的内容及其理解.docx》由会员分享,可在线阅读,更多相关《楞次定律的内容及其理解.docx(14页珍藏版)》请在冰豆网上搜索。

楞次定律的内容及其理解.docx

楞次定律的内容及其理解

楞次定律的内容及其理解

1、内容:

感应电流的磁场,总要阻碍引起感应电流的磁通量的变化

2、四步理解楞次定律

  1.明白谁阻碍谁──感应电流的磁通量阻碍产生产感应电流的磁通量的变化。

 

  2.弄清阻碍什么──阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。

  3.熟悉如何阻碍──原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。

 

  4.知道阻碍的结果──阻碍并不是阻止,结果是增加的还增加,减少的还减少。

 

3、理解楞次定律的另一种表述 

  1.表述内容:

感应电流总是反抗产生它的那个原因。

 

 2.表现形式有四种:

 

  a.阻碍原磁通量的变化;增反减同 

  b.阻碍物体间的相对运动,有的人把它称为“来拒去留”;

c.增缩减扩,磁通量增大,面积有收缩的趋势,磁通量减小,面积有扩大的趋势

d.阻碍原电流的变化(自感)。

二、正确区分楞次定律与右手定则的关系

  导体运动切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的特例。

用右手定则能判定的,一定也能用楞次定律判定,只是不少情况下,不如用右手定则判定来得方便简单。

反过来,用楞次定律能判定的,并不是用右手定则都能判断出来。

如闭合圆形导线中的磁场逐渐增强,用右手定则就难以判定感应电流的方向;相反,用楞次定律就很容易判定出来

三、楞次定律的应用

1、应用楞次定律的步骤

a.明确原来的磁场方向

b.判断穿过(闭合)电路的磁通量是增加还是减少

c.根据楞次定律确定感应电流(感应电动势)的方向

d.用安培定则(右手螺旋定则)来确定感应电流(感应电动势)的方向

2、应用拓展

(1)、增反减同。

当原磁通量增加时,感应电流的磁场方向就与原磁场方向相反,当原磁通量减少时,感应电流的磁场方向与原磁场方相同,

例1、两圆环A、B置于同一水平面上,其中A为均匀带电绝缘环,B为导体环,当A以如图所示的方向绕中心转动的角速度发生变化时,B中产生如图所示方向的感应电流.则

(A)A可能带正电且转速减小  

(B)A可能带正电且转速增大

(C)A可能带负电且转速减小  

(D)A可能带负电且转速增大

解:

若A带正电,则A环中有顺时针方向的电流,则原磁场垂直A环向里,而感应电流的磁场方向垂直B环向外,由增反减同,说明原磁场在增加,转速在增大;若A环带负电,,则则A环中有逆时针方向的电流,则原磁场垂直A环向外,而感应电流的磁场方向垂直B环向外,说明原磁场在减小,原电流在减小,转速减小,所以B、C正确。

(2)来拒去留:

感应电流阻碍相对运动,原磁场来时,感应电流的磁场要拒之,原磁场离去时,感应电流的磁场要留之,从运动的效果看,可表述为敌进我退,敌退我追

例2.如图2所示,闭合线圈上方有一竖直放置的条形磁铁,磁铁的N极朝下但未插入线圈内部。

当磁铁向上运动时:

A.线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互吸引

B.线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互排斥

C.线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互吸引

D.线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互排斥

解:

由增反减同,N向下运动,原磁通量增加,感应电流磁场方向与原磁场方向相反,,由安培定则知感应电流方向与图中箭头方向相同,由来拒去留,知磁铁与线圈相互排斥,故B正确。

(3)增缩减扩:

回路原磁通量增大时,闭合回路的面积有收缩的趋势,原磁通量减少时,闭合回路面积有扩大的趋势

例3、如图3所示,两个闭合圆形线圈A、B的圆心重合,放在同一水平面内,线圈B中通以图中所示的交变电流,设t=0时电流沿逆时针方向(图中箭头所示).对于线圈A,在

时间内,下列说法中正确的是:

  A.有顺时针方向的电流,且有扩张的趋势

B.有顺时针方向的电流,且有收缩的趋势

  C.有逆时针方向的电流,且有扩张的趋势

D.有逆时针方向的电流,且有收缩的趋势

解:

时间内,B中的电流为顺时针增大,由增反减同,A中的感应电流要与B中的电流相反,A中的电流为逆时针,由增缩减扩,A的面积有收缩的趋势;D正确。

例4.如图所示,ef、gh为两水平放置相互平衡的金属导轨,ab、cd为搁在导轨上的两金属棒,与导轨接触良好且无摩擦.当一条形磁铁向下靠近导轨时,关于两金属棒的运动情况的描述正确的是

A.如果下端是N极,两棒向外运动;如果下端是S极,两棒相向靠近

B.如果下端是S极,两棒向外运动;如果下端是N极,两棒相向靠近

C.不管下端是何极,两棒均向外互相远离

D.不管下端是何极,两棒均互相靠近

解:

条形磁体向下运动,回路的磁通量在增加,回路的面积有收缩的趋势,所以两棒相互靠近,与下端是哪个极无关,D正确。

(4)阻碍原电流变化:

线圈是原电流增加,在线圈中自感电流的方向与原电流方向相反,反之,则相同

例5.如图所示,L1,L2为两盏规格相同的小灯泡,线圈的直流电阻与小灯泡的电阻相等,安培表电阻不计。

当开关S闭合时,安培表中指示某一读数,下列说法中正确的是()

A、开关S闭合时,L1,L2都立即变亮

B、开关S闭合时,L2立即变亮,L1逐渐变亮

C、开关S断开瞬间,安培表有可能烧坏

D、开关S断开时,L2立即熄灭,L1逐渐熄灭

解:

开关S闭合,线圈中原电流在增大,感应电流阻碍其增大,所以L1立即变亮,L2逐渐变亮,;开关S断开时,线圈中电流在减小,感应电流阻碍其减小,L1逐渐熄灭,L2立即熄灭。

D正确。

楞次定律的三种表述方式:

  表述一:

感应电流的磁场总是阻碍引起感应电流的磁通量的变化;

  表述二:

导体和磁体发生相对运动时,感应电流的磁场总是阻碍相对运动;

  表述三:

感应电流的方向,总是阻碍引起它的原电流的变化;

判断感应电流方向的步骤:

1确定原磁场方向;

2判断穿过闭合电路磁通量的变化情况;

3根据楞次定律判断感应电流的磁场方向;

4根据安培定则判断感应电流的方向。

示例:

如图所示,光滑金属导轨的一部分处在匀强磁场中,当导体棒ab向右匀速运动切割磁感线时,判断ab中感应电流方向.

1.回路中原磁场方向垂直纸面向里.

2.通过回路的磁通量在减小.

3.感应电流的磁场与原磁场方向相同,为垂直纸面向里.

4.ab中感应电流的方向为向上.

楞次定律表明感应电流的后果总与引起感应电流的原因相对抗!

为什么对呀?

解答:

楞次定律的内容是:

感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。

感应电流的磁场要阻碍原磁通量的变化,这并不等于说,由于感应电流的磁场的阻碍作用,原磁场不变化了,或者改变了变化的方向,恰恰相反,原磁场该是怎样变化,还是怎样变化。

譬如原磁场是增强的,尽管有感应电流的磁场的阻碍作用,原磁场仍是逐渐增强的,感应电流的磁场的阻碍作用,只是使得原磁场的增强变得缓慢些罢了,但终归还是要增强的,而且要达到原来所要达到的增强程度,而绝不能理解成起阻止作用,而应理解为“反抗”(对抗)或“补偿”,即当原磁场引起的磁通量增加时,感应电流的磁场方向将与原磁场方向相反,以“反抗”原磁通量的增加;当原磁场引起的磁通量减少时,感应电流的磁场方向将与原磁场的磁场方向相同,以“补偿”原磁通量的减少。

可见“阻碍”的方式是感应电流产生的磁场与原磁场方向相同或相反,即感应电流的后果总与引起感应电流的原因相对抗。

“阻碍”并不是“阻止”,如果磁通量变化被阻止了,则感应电流也就不能产生了。

因此“楞次定律表明感应电流的后果总与引起感应电流的原因相对抗!

”这句话是正确的。

 

对于楞次定律的内容:

感应电流的方向即感应电流的磁场总要阻碍引起感应电流的磁通量的变化,这句话怎样理解?

感应电流的方向和磁通量的变化该怎样判断?

感应电流的方向即感应电流的磁场总要阻碍引起感应电流的磁通量的变化,当磁通量增加时,产生的感应电流会阻碍磁通量的增加,也就时说感应电流产生的磁场方向于原来的磁场方向相反。

当磁通量减小时,产生的感应电流会阻碍磁通量的减小,也就时说感应电流产生的磁场方向于原来的磁场方向相同。

磁通量的变化要看通过线圈的磁感线数目,当磁感线数增加时,磁通量增加。

感应电流的方向根据左手定则进行判断。

怎样判断感应电怎样判断感应电流的方向呢?

解答:

一般可以用楞次定律来进行判断,楞次定律的内容为:

感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

应用楞次定律判断感应电流的方向的具体步骤为:

(1)明确原磁通量的方向

(2)判断磁通量的增减情况

(3)确定感应电流的磁场的方向

(4)利用楞次定律的“增反减同”的原理来推断感应电流的方向。

注意:

阻碍不是阻止!

当磁通量增加时,感应电流的磁场方向与原磁场方向相反,当磁通量减小时,感应电流的磁场方向与原磁场方向相同。

只是延缓了磁通量变化的快慢!

(另外:

对于导体切割磁感线产生感应电流的方向用右手定则来判断较为简便。

右手定则:

伸开右手,使大拇指跟其余四个手指垂直,并跟手掌在一个平面内,把右手放入磁场中,让磁感线垂直穿入手心,大拇指指向导体运动方向,那么其余四个手指所指的方向就是感应电流的方向。

 

复习要点

1、掌握磁通量概念及其意义,能够正确判断磁通量的变化情况。

2、了解电磁感应现象,掌握发生电磁感应现象,产生感应电动势、产生感应电流的条件。

3、掌握右手定则和楞次定律,并能灵活运用于感应电流方向的判断。

4、掌握法拉第电磁感应定律,明确

和E=LvB两种表述形式的适用条件和适用范围,并能运用法拉第电磁感应定律熟练地计算电磁感应现象中所产生的感应电动势。

5、对导体棒旋转切割磁感线时所产生的感应电动势能够灵活地运用法拉第电磁感应定律做出正确的计算。

6、了解自感现象,掌握自感现象中的基本特征。

二、难点剖析

1、关于电磁感应的几个基本问题

(1)电磁感应现象

所谓电磁感应现象,实际上是指由于磁的某种变化而引起电的产生的现象,磁场变化,将在周围空间激起电场;如周围空间中有导体存在,一般导体中将激起感应电动势;如导体构成闭合回路,则回路程还将产生感应电流。

(2)发生电磁感应现象的两种基本方式及其理论解释

①导体在磁场中做切割磁感线的相对运动而发生电磁感应现象:

当导体在磁场中做切割磁感线的相对运动时,就将在导体中激志感应电动势。

这种发生电磁感应现象的方式可以用运动电荷在磁场中受到洛仑兹力的作用来解释。

如图-1所示,当导体棒ab在磁场B中做切割磁感线运动时,棒中的自由电荷将随棒一起在磁场中运动而受到洛仑兹力fB的作用于是受到fB作用的自由电荷将向棒端迁移而使棒两端分别积累起正、负电荷,形成所谓感应电动势。

图-3

图-1图-2

 

②磁场变化使穿过磁场中闭合回路的磁通量改变而发生电磁感应现象:

当磁场的强弱改变而使穿过磁场中的闭合回路程的磁通量发生变化时,就将在闭合回路程里激起感应电流。

这种发生电磁感应现象的方式可以用麦克斯韦的电磁场理论来解释。

如图-2所示,在滑动变阴器滑动头P向右滑动的过程中,用绝缘线悬挂着的线圈a中的自由电荷沿特定方向移动,形成所谓感应电流。

(3)发生电磁感应现象,产生感应电流的条件:

发生电磁感应现象,产生感应电流的条件通常有如下两种表述。

①当穿过线圈的磁通量发生变化时就将发生电磁感应现象,线圈里产生感应电动势。

如线圈闭合,则线圈子里就将产生感应电流。

②当导体在磁场中做切割磁感线的运动时就将发生电磁感应现象,导体里产生感应电动势如做切割感线运动的导体是某闭合电路的一部分,则电路里就将产生感应电流。

应指出的是:

闭合电路的一部分做切割磁感线运动时,穿过闭合电路的磁通量也将发生变化。

所以上述两个条件从根本上还应归结磁通量的变化。

像图-

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1