高考全国3卷理科数学及答案.docx

上传人:b****6 文档编号:4558328 上传时间:2022-12-06 格式:DOCX 页数:14 大小:134.09KB
下载 相关 举报
高考全国3卷理科数学及答案.docx_第1页
第1页 / 共14页
高考全国3卷理科数学及答案.docx_第2页
第2页 / 共14页
高考全国3卷理科数学及答案.docx_第3页
第3页 / 共14页
高考全国3卷理科数学及答案.docx_第4页
第4页 / 共14页
高考全国3卷理科数学及答案.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

高考全国3卷理科数学及答案.docx

《高考全国3卷理科数学及答案.docx》由会员分享,可在线阅读,更多相关《高考全国3卷理科数学及答案.docx(14页珍藏版)》请在冰豆网上搜索。

高考全国3卷理科数学及答案.docx

高考全国3卷理科数学及答案

绝密★启用前

2019年普通高等学校招生全国统一考试

理科数学

本试卷共23题,共150分,共5页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:

1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;

在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:

本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A{1,0,1,2},B{xx21},则AB

A.1,0,1B.0,1C.1,1D.0,1,2

2.若z(1i)2i,则z=

A.1iB.1+iC.1iD.1+i

3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古

典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为

A.0.5B.0.6C.0.7D.0.8

4.(1+2x2)(1+x)4的展开式中x3的系数为

A.12B.16C.20D.24

5.已知各项均为正数的等比数列{an}的前4项为和为15,且a5=3a3+4a1,则a3=

A.16B.8C.4D.2

6.已知曲线yaexxlnx在点(1,ae)处的切线方程为y=2x+b,则

A.ae,b1B.a=e,b=1

C.ae1,b1D.ae1,b1

7.函数

2x3

y2x2x

在6,6的图象大致为

C.

ECD⊥平面ABCD,

M是线段

ED的中点,则是相交直线

A.

BM=EN,

且直线

BM、

EN

B.

BM≠EN,

且直线

BM,

EN

是相交直线

C.

BM=EN,

且直线

BM、

EN

是异面直线

D.

BM≠EN,

且直线

BM,

EN

是异面直线

8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面

9.执行下边的程序框图,如果输入的

为0.01,则输出s的值等于

A.2

1

24

B.

1

25

C.

26

D.

2217

 

10.双曲线C:

PO=PF

A.32

4

11.设fx是定义域为

1

A.f(log3)>4

3

22)>f

22

xy=1的右焦点为F,

42

,则△PFO的面积为

B.32

2

R的偶函数,

点P在C的一条渐进线上,

O为坐标原点,若

且在

C.22

D.32

3

232)>

2

23)>f

f(223)

log31)

4

0,单调递减,则f(log31)>

4

(223)>f

B.

2

223)>f(

3

22)

12.设函数fx=sin(x)(>0),已知

5

3

22

)>f(log31)

4fx在0,2有且仅有5个零点,下述

 

四个结论:

有且仅有3个极大值点

①fx在(0,2)

有且仅有2个极小值点

②fx在(0,2)

③fx在(0,)

10

④的取值范围是[12,29)

510其中所有正确结论的编号是A.①④B.②③C.①②③

二、填空题:

本题共4小题,每小题5分,共20分。

13.已知a,b为单位向量,且

单调递增

D.①③④

a·b=0,若c2a5b,则cosa,c

 

S1014.记Sn为等差数列{an}的前n项和,a1≠0,a23a1,则10.

S522

15.设F1,F2为椭圆C:

x+y1的两个焦点,M为C上一点且在第一象限.若△MF1F2

3620

为等腰三角形,则M的坐标为.

16.学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体

F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm,3D打印所用原料密度为0.9g/cm3,不考虑打印损耗,制作该模型所需原料的质量为.

三、解答题:

共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:

共60分。

17.(12分)

为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:

将200只小鼠随机分成A、B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每组小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:

记C为事件:

“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的

估计值为0.70.

(1)求乙离子残留百分比直方图中a,b的值;

(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).

18.(12分)

AC

△ABC的内角A、B、C的对边分别为a、b、c,已知asinbsinA.

2

(1)求B;

(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.

19.(12分)

图1是由矩形ADEB、Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.

(1)证明:

图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;

(2)求图2中的二面角B-CG-A的大小.

20.(12分)

已知函数f(x)2x3ax2b.

(1)讨论f(x)的单调性;

(2)是否存在a,b,使得f(x)在区间[0,1]的最小值为1且最大值为1?

若存在,

求出a,b的所有值;若不存在,说明理由.

21.(12分)

x21

已知曲线C:

y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,22

B.

(1)证明:

直线AB过定点:

5

(2)若以E(0,2)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形

ADBE的面积.

(二)选考题:

共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第

一题计分。

22.[选修4-4:

坐标系与参数方程](10分)

如图,在极坐标系Ox中,A(2,0),B(2,),C(2,),D(2,),弧AB,BC,

44

CD所在圆的圆心分别是(1,0),(1,),(1,),曲线M1是弧AB,曲线M2是弧BC,曲2

线M3是弧CD.

(1)分别写出M1,M2,M3的极坐标方程;

(2)曲线M由M1,M2,M3构成,若点P在M上,且|OP|3,求P的极坐标.

23.[选修4-5:

不等式选讲](10分)

设x,y,zR,且xyz1.222

(1)求(x1)2(y1)2(z1)2的最小值;

1

a3或a1.

(2)若(x2)2(y1)2(za)2成立,证明:

3

2019年普通高等学校招生全国统一考试

理科数学·参考答案

、选择题

1.A2.D3.C

11.C12.D

4.A5.C

6.

D

7.B8.B

9.C10.A

二、

填空题

13.

2

3

14.4

15.

(3,15)

16.118.8

三、

解答题

17.

解:

(1)由已知得0.

70=a+0.20+0.

15,

故a=0

.35.

b=1–0.05–0.15–0.

70=0.10.

(2)甲离子残留百分比的平均值的估计值为

2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为

3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.

BB1

因为cos0,故sin,因此B=60°.

222

2)由题设及

(1)知△ABC的面积S△ABC

 

由正弦定理得acsinA

sinC

sin120C31

sinC2tanC2

由于△ABC为锐角三角形,

故0°

(1)知A+C=120°,所以30°

故12a2,从而

33

S△ABC

8ABC2

因此,△ABC面积的取值范围是

33

82

 

19.解:

1)由已知得ADBE,CGBE,所以ADCG,故AD,CG确定一个平面,从

而A,C,G,D四点共面.

由已知得ABBE,ABBC,故AB平面BCGE.又因为AB平面ABC,所以平面ABC平面BCGE.

(2)作EHBC,垂足为H.因为EH平面BCGE,平面BCGE平面ABC,所以EH平面ABC.

由已知,菱形BCGE的边长为2,∠EBC=60°,可求得BH=1,EH=3.

以H为坐标原点,HC的方向为x轴的正方向,建立如图所示的空间直角坐标系H–xyz,

 

则A(–1,1,0),C(1,0,0),G(2,0,3),CG=(1,0,3),AC=

(2,–1,0).

设平面ACGD的法向量为n=(x,y,z),则

所以可取n=(3,6,–3).

又平面BCGE的法向量可取为m=(0,1,0),所以cosn,mnm3

|n||m|2

因此二面角B–CG–A的大小为30°.

20.解:

(1)f(x)6x22ax2x(3xa).

令f(x)0,得x=0或xa

3

若a=0,f(x)在(,)单调递增;

f(x)在,a,(0,)单调递增,在a,0单调递减.

33

2)满足题设条件的a,b存在.

i)当a≤0时,由

(1)知,f(x)在[0,1]单调递增,所以f(x)在区间[0,l]的最小

值为f(0)=b,最大值为f

(1)2ab.此时a,b满足题设条件当且仅当b1,2ab1,即a=0,b1.

(ii)当a≥3时,由

(1)知,f(x)在[0,1]单调递减,所以f(x)在区间[0,1]的最大

值为f(0)=b,最小值为f

(1)2ab.此时a,b满足题设条件当且仅当

3

若2a7b1,b=1,则a332,与0

3

若ab1,2ab1,则a33或a33或a=0,与0

27

综上,当且仅当a=0,b1或a=4,b=1时,f(x)在[0,1]的最小值为–1,最大值

为1.

21.解:

(1)设Dt,12,Ax1,y1,则x122y1.

整理得2tx12y1+1=0.

设Bx2,y2,同理可得2tx22y2+1=0.故直线AB的方程为2tx2y10.所以直线AB过定点(0,1).

2

(2)由

(1)得直线AB的方程为ytx1.

2

1

ytx22由22,可得x22tx10.

x2

yx2

于是x1x22t,x1x21,y1y2tx1x212t21,

|AB|1t2x1x2

1t2x1x24x1x22t21.

设d1,d2分别为点D,E到直线AB的距离,则d1t21,d22t21

因此,四边形ADBE的面积S1|AB|d1d2t23t21.

2

设M为线段AB的中点,则Mt,t212.

由于EMAB,而EMt,t22,AB与向量(1t,

平)行,所以

tt22t0.解得t=0或t1.

当t=0时,S=3;当t1时,S42.

因此,四边形ADBE的面积为3或42.

22.解:

(1)由题设可得,弧AB,BC,CD所在圆的极坐标方程分别为

2cos,

2sin,2cos.

所以M1的极坐标方程为2cos0π,M2的4

极坐标方程为

π3π3π

2sin4π34π,M3的极坐标方程为2cos34ππ

2)设P(,),由题设及

(1)知

若0π,则2cos3,解得π;

46

若π3π,则2sin3,解得π或2π;

4433

若3ππ,则2cos3,解得5π.

46

 

2

23.解:

(1)由于[(x1)(y1)(z1)]2

(x1)2(y1)2(z1)22[(x1)(y1)(y1)(z1)(z1)(x1)]3(x1)2(y1)2(z1)2,

故由已知得(x1)2(y1)2(z1)24,

511

当且仅当x=,y=–,z时等号成立.

333

所以(x1)2(y1)2(z1)2的最小值为34.

(2)由于

[(x2)(y1)(za)]2

222

(x2)2(y1)2(za)22[(x2)(y1)(y1)(za)(za)(x2)]

3(x2)2(y1)2(za)2,

故由已知

222(2a)2

(x2)2(y1)2(za)2(23a),

当且仅当

4a1a2a2x,y,z时等号成立.

333

因此(x2)2(y1)2(za)2的最小值为(2a)

 

由题设知

(2a)21,

33,

解得a3或a1.

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 农学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1