高考数学二轮复习专项微专题核心考点突破专题30圆锥曲线的取值范围解析版.docx

上传人:b****5 文档编号:4555061 上传时间:2022-12-06 格式:DOCX 页数:79 大小:135.84KB
下载 相关 举报
高考数学二轮复习专项微专题核心考点突破专题30圆锥曲线的取值范围解析版.docx_第1页
第1页 / 共79页
高考数学二轮复习专项微专题核心考点突破专题30圆锥曲线的取值范围解析版.docx_第2页
第2页 / 共79页
高考数学二轮复习专项微专题核心考点突破专题30圆锥曲线的取值范围解析版.docx_第3页
第3页 / 共79页
高考数学二轮复习专项微专题核心考点突破专题30圆锥曲线的取值范围解析版.docx_第4页
第4页 / 共79页
高考数学二轮复习专项微专题核心考点突破专题30圆锥曲线的取值范围解析版.docx_第5页
第5页 / 共79页
点击查看更多>>
下载资源
资源描述

高考数学二轮复习专项微专题核心考点突破专题30圆锥曲线的取值范围解析版.docx

《高考数学二轮复习专项微专题核心考点突破专题30圆锥曲线的取值范围解析版.docx》由会员分享,可在线阅读,更多相关《高考数学二轮复习专项微专题核心考点突破专题30圆锥曲线的取值范围解析版.docx(79页珍藏版)》请在冰豆网上搜索。

高考数学二轮复习专项微专题核心考点突破专题30圆锥曲线的取值范围解析版.docx

高考数学二轮复习专项微专题核心考点突破专题30圆锥曲线的取值范围解析版

2020年高考数学二轮复习专项微专题核心考点突破

专题30圆锥曲线的取值范围

考点命题分析

圆锥曲线部分往往以客观题形式考查圆锥曲线的标准方程、圆锥曲线的定义、离心率、焦点弦长、双曲线

的渐近线等问题.圆锥曲线的综合问题主要有最值问题、参变量范围问题、探究性问题等题型,这些问题充分体现了数形结合思想,函数与方程思想,主要考查转化与化归能力、推理论证能力、运算求解能力以及创新意识和应用意识,是高考命题的常见题型和基本问题,本文就几个热点问题做一下总结和分享

1求离心率的值或者取值范围

圆锥曲线离心率及其取值范围是高考的一个热点,也是难点,这一类问题的处理方法就是准确构建关于基

小题大做

本量a,b,c之间的等量关系或者不等关系,题型往往以小题为主,所以在解题时要谨防

例1已知双曲线=>0,*>0}的左,右焦点分别为租“叫屁包町,若双曲线上存在点P使

由^二FT,可得金「士,所以

因为e>1,所以PF_>Pf:

2,点P在双曲线的右支上.

又PFj-PE=ePfi-P^=^[8-1)=血,

解得=卑.

因为-n(不等式两边不能取等号,否则题中分式中的分母为0,无意义),所以,即

三A・i,解得1+1.

方法点睛:

结合定义考虑几何量之间的大小关系,特别是两个焦点和曲线上的点构成的焦点三角形中的等量

关系.不等关系的建立一般都转化为椭圆或双曲线的几何性质来处理,如椭圆中横、纵坐标的范围

珀&[i®町■恥巨[i乩虹PF1或者PF2的范围为[a—c,a+c],双曲线左支上的点到左、右焦点斤迟的距离

畸皿•伽聪驚胡4到右顶点A2的距离圧臥點越壯等来构建不等式,当然要注意端点值是否能取到(如

例2)

2以动直线中的参量为变量的定点、定值、取值范围问题

直线与圆锥曲线中涉及的中点问题、垂直问题、弦长问题、斜率问题等,都最终转化为动直线中的变量(如

斜率k)的等式或不等式来解决.

例2设圆疋+护+2工115二©的圆心为A,直线I过点B(1,0)且与x轴不重合,交圆A于C,D两点,过B作AC的平行线交AD于点E.

(I)证明|EA|+|EB|为定值,并写出点E的轨迹方程;

(n)设点E的轨迹为曲线Ci,直线I交Ci于M,N两点,过B且与I垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.

思路探求:

(I)因为|AD|=|AC|,EB//AC,故圧加二4CD二.

所以[EB]=\ED\,即|&4|+|£9|=|£4|+\£D|=\AD\.

又圆A的标准方程为(x+1)2+y2=l6,从而|4J|=4,所以|EA|+|EB|=4.

由题设得A(-1,0),B(1,0),|AB|=2,由椭圆定义可得点E的轨迹方程为-1^HD).

(n)根据斜率是否存在设出直线方程,当直线斜率存在时设其方程为y=k(x-1)(kz0,)由根与系数的关系和

弦长公式把面积表示为斜率k的函数,再求最值.

当I与x轴垂直时,其方程为x=1,|MN|=3,|PQ|=8,四边形MPNQ的面积为12.

当l与x轴不垂直时,设l的方程为y=k(x-1)住HO),駅%药XJVCr鈕〉.

Ify=k(x-i)

由护严得4^--3)^-Sk3x+-12=1).

二1

m,r硬3七

则巧4孔叫叱=而击.

所以W=—帀|三三黯<

过点B(1,0)且与垂直的直线w^y=-^(x-1),A到m的距离为#^,所

以『Q叫"7壽仁咄兽

故四边形MPNQ的面积丢心如.

综上,四边形MPNQ面积的取值范围为[12,0^5).

例3已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线l在y轴上的截距为m(m^0)交椭圆于A、B两个不同点

(I)求椭圆的方程;

(n)求m的取值范围;

(川)求证直线MA,MB与x轴始终围成一个等腰三角形思路探求:

(1)椭圆的方程为—4F—=1.

n)因为直线I平行于0M,且在y轴上的截距

为m,又咯=亍,得直线I的方程为:

y=+

y=[耳十赛1

得一+2剧疋一2m■—4二iD.工+茎=1

E呂因为直线I与椭圆交于A、B两个不同点,所以△=(2m)2—4(2m2—4)>0,解得一2

川)设直线MA,MB的斜率分别为緒念盘,只需证明=0即可.

设(如凫》,且利十二-Er壬"詁-4,则九=峯雇=翳

1)為一2》亠(扣詞+悔巧缶工)

故直线MA,MB与x轴始终围成一个等腰三角形方法点睛:

联立方程不需要直接求出交点坐标,利用韦达定理得到两个交点的横坐标或者纵坐标与动直线变量(如例2中的斜率k和例3中的截距m)的直接关系,盂1+斑=域上)或h(m),策拒=g(約或g(m),最后把中点问题、弦长或者长度之比问题、垂直问题、斜率问题、面积问题等全部转化为g(k)关于k或m的等式或不等式来处理,这里尤其要注意利用判别式本身的不等关系对参数的限定3过已知曲线上定点的弦的问题有一类问题,直线过已知曲线上某定点,这种问题的解决又必须得求出另外一点的具体坐标,这时就需要

过定点的直线的方程和曲线联立,转化为

元二次方程(或类一元二次方程),考察判别式后,由韦达定理结合定点的坐标就可以求出另一端点的坐标,进而解决问题例4已知点A,B,C是椭圆E石+話

其中点巒麝是椭圆的右顶点,直线BC过椭圆的中心0,且……•,:

,如图.

(I)求点C的坐标及椭圆E的方程;

(n)若椭圆上存在两点P,Q使得直线PC与直线QC关于直线垃f对称,求直线PQ的斜率.

思路探求:

(I)直接求基本量得椭圆

E的方程为二亠二

n)要求直线PQ的斜率,需要知道p,Q的具体坐标,而这个坐标可以直接通过设直线去求解•因为直线

PC与直线QC关于直线疋三应T对称,则设直线PC的斜率为k,则直线QC的斜率为一k,从而直线PC的方程为萼一据二砍一#5),即yh£+為◎一k),

由/=to4;vSC1_ft3消去y,整理得U+管)尸十丘冉垃一的寛十9护一13fc-3=0.

t.jr34-—12

由无二冉是方程的一个根,得和-也二晋霁1,即巧二:

;[囂:

侗理可得:

勺二:

;IM;.

丹%+V3C1-紆+虹罕-谄卩+町=心+叼)-碍二宗刍,

_曹W+血两4®_-mi

坯_%=莎五厨_忑丽两'=丽丽冠

则直线PQ的斜率为定值T.

方法点睛:

解决此类问题,一是过曲线上的点的直线和曲线相交,点的坐标是方程组消元后得到的方程的根,

因为一个点的坐标已知,往往通过韦达定理来求另一个动点的具体坐标;二是设出直线求出一点的坐标后,

要利用变量的关联性去求另外的点的坐标,如例4利用直线的斜率互为相反数,求出P的横坐标后直接把k

用一k替换,就得到了点Q的横坐标,减少计算量,达到节省时间的目的4•利用点在曲线上”直接设而不求解决问题

设匚恆野声“甘仗加为〕在二次曲线mX+ny2=1上,即有吋f+n疋=!

■祖兀g+乳対=1,两式相减即可得

m(x±+-x2)+n(yt+%)他-y?

)=0.

该式可以看成是I匸+毛1(監-比),(^+盹),-丙)这四个量的组合,

-2

如果设AB的中点为%』J,,由此可以看出与两点坐标的平方差有关的或者与弦的中点、

Lr—

斜率有关的问题可以采用设点相减来处理

例5过点M(1,1)作斜率为--的直线与椭圆:

'相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于思路探求:

恰好已知的是弦的中点与斜率,直接由设点法作差

所以得:

=nJ■:

,一.「•:

=J•从而,-一一一

又■■-=i■■-.■-,^y/—就瑁二-,得-即椭圆C的离心率:

二此类问题的一般性结论如下设直线与圆锥曲线相交于A,B,设弦AB中点为紬齢曲,弦AB的斜率为k,则:

⑴椭圆密•吗i金伙③沖毎满足:

卜、亠’■■■■■.-'

⑵双曲线一一一二’-1「满足一-一•一°=耐⑶抛物线泸」和瀧加塔◎满足獅忌:

比例6:

A,B为椭圆石4首二1任意两点,A点关于x轴的对称点为C,若直线BA交x轴于点P,直线BC交x轴于点Q,探究OP?

OQ是否为定值.

思路探求:

因为A,B是椭圆上任意的点,点P和点Q的得出是与AB的具体坐标值有关系的,如果设直线

求点,那就太过复杂了,不妨直接设点试试

设,则心丁说,直线BA的方程为「二亍亠:

令y=0,得点“一-■:

同理得点:

.

op.oo=|空g匹皿皿1|再切.I|硏力

有趣的是同样的A,BC三点放到圆和双曲线上,也为定值,有兴趣的读者可以一试方法点睛:

我们往往在直接设点还是设直线求点的问题上充满疑惑,究其规律,往往是如果与两个坐标的具体值无关的情况一般是采用设直线去求解,如果问题的解决是与某点的具体坐标值相关的,我们可以考虑直接设点然后整体消元

最新模拟题强化

所以

_b^_

\a2b2

因为

222

abc=16,

所以

a22,

1.已知双曲线y2

a

x

21(a0,b0)的一个焦点与抛物线

b

2

x16y的焦点重合,

的渐近线的距离大于

2,则该双曲线的离心率的取值范围为(

A.1,2

B.2,C.1八2

D.迈

【答案】D

【解析】

因为抛物线方程x2

16y的焦点坐标为0,4,所以c4.

22

因为双曲线£笃

a2b2

1的渐近线为axby0,

2

2

且点0,b到该双曲线

所以该双曲线的离心率为

2

x

2.已知双曲线—

a

b2

a0,b0

的左、右焦点分别为

Fi,F2,且右顶点到渐近线的距离与到直线

2

X—距离的比值大于2,则双曲线的离心率范围为(

C

B.1,.2

C.1,2

d.1<3

 

【答案】A

【解析】

ab

右顶点到渐近线的距离为d—

c

2

aca

c

2

a

右顶点到直线x的距离为a

c

ab

由题设条件有一J

aca

整理得到

c

所以5a3c即1-

故选:

A.

2

3•已知椭圆x

2y_b2

1的左焦点为F

,左、右顶点分别为A,C,上顶点为B•过F,B,C作

圆P,其中圆心

P的坐标为

m,

n.当m

0时,椭圆离心率的取值范围为(

o<2

C.

o,(

2

【答案】A

【解析】

线段FC的垂直平分线为:

x1

-1b2

 

线段BC的中点,一.

22

kBc=-b,

1

•••线段BC的垂直平分线的斜率k-.b

•线段BC的垂直平分线方程为:

y匕=丄x1

2b2

把x=

1

J1b2

m代入上述方程可得:

b2\1b2-

2

yn

2b

•/m

n

°,

•1

J1

2

22

b+b

e°.

2b

化为:

b>JT音,又°b1,解得卫2

2

•e=C=c=Jlb2°,晅.

a2

故选:

A.

4.已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为巧*兀,且两条曲线在第一象限的交点为

P,册扎基是以p扎为底边的等腰三角形,若1^1=10,椭圆与双曲线的离心率分别为仏%,则也—可的取值范围是()

A.B.4-+ot)

C.(呵D.(泠

【答案】A

【解析】

设椭圆与双曲线的半焦距为GP吒二】口戸題=**利用三角形中边之间的关系得出c的取值范围,再根据

椭圆或双曲线的性质求出各自的离心率,最后依据c的范围即可求出巧…佝的取值范围;

—m---,—

,故选A.

5-^_^-1s

22

5.已知F「F2分别是双曲线C:

?

b2

1(a0,b0)的左、

右焦点,直线I过Fi,且

条渐近线

平行,若F2到I的距离大于a,则双曲线

C的离心率的取值范围为

A.(怎)

B•(1,5)

C.

【答案】C

【解析】

设过Fi与渐近线

-x平行的直线

a

c),

由题知F?

到直线

I的距离d

|bcbc|

a2

b

2ba,可得—

a

所以离心率

故选:

C.

2

x

6.已知点F为双曲线E:

—2

a

2

y_

b2

1(a,

b0的右焦点,直线

ykx(k0)与E交于M

N两点,若

MFNF,设MNF

,且

幕刁,则该双曲线的离心率的取值范围是

A.h/2^/276]B

1]

C.[2,、迈,6]D.[、2'、3

1]

【答案】D

【解析】

由MFNF可得|OM|

|ON|

|OF|

c,取双曲线的左焦点F,连接MF,

NF,

可得四边形MFNF为矩形,即有

|NF|

|MF|2ccos,|MF|2csin,

由双曲线的定义可得2a|MF||MF|2ccos2csin

 

c1

可得eaCOSsin2cos(-),

由[06],可得

即有cos(

即有e的范围是[2,1,3],

x

已知双曲线E:

-y

a

y1(a>0,b>0)的左、右焦点分别为F1,F2,若E上点A满足AF1b2

2AF2

RAF?

的取值范围为

,则E的离心率的取值范围是

3,5

C.3,5

7,9

【答案】B

【解析】

由双曲线的定义有

AFi

AF2

2a,又AFi|2AF2I,故AF

4a,AF2

2a

cosF|AF2

2

4a+

2a2

2c2

5a2

cosF1AF2

e.7,3.

故选:

B

24a

1,2•即

2

8.已知点F1,F2分别是双曲线

2a

C:

5a2

2

c

4a2

2

2y

b2

2

c

4a2

•又

F1AF2的取值范围为

2n

",

5e2

4

e29.

1(b

0)的左、右焦点,

O为坐标原点,点P在双曲线

C的右

 

支上,且满足f1f2

A

a.1,

【答案】

【解析】

由|FiF2

PFi

2OP,tanPF2F13,则双曲线C的离心率的取值范围为(

B.[肓

2OP得,OP

PF2

F1F2

C.I,”

D.

2]

c,根据三角形的性质可知,

2

4c.由双曲线的定义可得,

PF…3PF2,可得PF2,a.所以PF1

PF2

PF2

2c2

△PF1F2为直角三角形,且PFiPF2,

PF1

时2

PF2

2a,又

4c2可化为

2

2a

PF2

4c,即PF2

2c2

a2,而

PF2,a,

22

a,4a,

解得

c,

故选:

A.

10

2

9.已知双曲线

2

y

b2

(a>0,0>0)的离心率为e,过右焦点且斜率为2e-2的直线与双曲线两个交

点分别位于第三象限和第四象限,则双曲线离心率的取值范围是(

5、

A.(1,5)

【答案】A

B.(5,+8)

3

C.(1,2)

D.(2.+8)

【解析】

因为过右焦点且斜率为

2e-2的直线与双曲线两个交点分别位于第三象限和第四象限

故斜率2e2小于渐

近线的斜率

0,

故02e

b2(e1).e21

两边平方有

e1e13e5

e5•因为e1•故1

3

故选:

A

 

b2

1a0,b0的左、右焦点,点PXo,yo

2

x

10.在直角坐标系xOy中,FpF2分别是双曲线

a

是双曲线右支上的一点,满足

LULT

PF

uuu

PF2

0,若点

P的横坐标取值范围是

Xo

54

a,—a

43

,则双曲线C的

 

离心率取值范围为(

【答案】

【解析】

lur由PF

LULU

PE0可得,X。

由于

X)

(5a,4a),所以

43

故选:

C.

11.已知R、

F2是双曲线

16

7

C.

3「2

2

5.2

2

y0

22

X)c

b2

2X0

a

2b2

c2

0,~2X0

a

b2

Xo

a2(b2c2)

25

a

16

3,2

2

2yb2

a2(b2

c

c2)

2

162

a,

9

9

16

b2

c

_9

16

1(a0,b

0)的左右焦点,过点

F2与双曲线的一条渐近线平行的直线

交双曲线另一条渐近线于点

M,若点M在以线段F1F2为直径的圆外,则双曲线离心率的取值范围是(

A.(2,)B.(.3,2)C.(迈D.(1r.2)

【答案】A

【解析】

双曲线X2-岭=1的渐近线方程为y=-X,

aba

不妨设过点F2与双曲线的一条渐过线平行的直线方程为拌(X-C),

a

bcbc

与y=-x联立,可得交点M(—,-),

a22a

•••点M在以线段F1F2为直径的圆外,

222

•••|0M|>|0F2|,即有仝+答>c2,

44a

•—>3,即即b2>3a2,2

a

c2—a2〉3a2,即卩c>2a.

c

则e=—>2.

a

•••双曲线离心率的取值范围是(

+s).

故选:

A.

12.已知Fi,F2分别为双曲线

2

x

~2

a

2

y

1(a0,b0)的左、

右焦点,若在双曲线右支上存在点

P,使得点F

2到直线PFi的距离为

a,则该双曲线的离心率的取值范围是

C.

1八5

D.、5,

 

【答案】B

【解析】

双曲线的渐近线为

bx,由极限思想,设过

a

F1且与一条渐近线平行的直线i的方程为y

bxaybc0,

依题意若在双曲线右支上存在点

P,使得点F2到直线PFi的距离为a,则点F2到直线l

距离大于a,即d

2bc

a

ab

2b

 

故选:

13.已知函数f(x)=x3+(a—1)

x2+3x+b的图象与x轴有三个不同交点,且交点的横坐标分别可作为抛物

【答案】(一3,-2).

【解析】

函数f(x)=x3+(a-1)x2+3x+b的图象与x轴有三个不同交点,即是方程x3+(a-1)x2+3x+b=0有三个不等实根.

由题得1是方程的根,故有1+(a-1)+3+b=0?

b=-a-3?

x3+(a-1)x2+3x+b=x3+(a-1)x2+3x-a-3=(x-1)[x2+a(x+1)+3]=0.

因为交点的横坐标分别可作为抛物线、双曲线、椭圆的离心率故方程g(x)=x2+a(x+1)+3=0有两个根,且一个根在(0,1)上,另一根在(1,+8)上,由图得,有g(0)>0且g

(1)v0?

a>-3且av-2,

故满足要求的实数a的取值范围是(-3,-2).

14.已知椭圆x2y~1(0

b

b1)的左焦点为F,左?

右顶点分别为A,C,上顶点为B.过F,B,C作圆P,

其中圆心

P的坐标为m,n.当

mn0时,椭圆离心率的取值范围为

【答案】

【解析】

由题,F

c,0,B

0,b,C1,0

,设BC的中点为M

b

且kBCb,

则BC的中垂线为

1,FC的中垂线为

2

b111c

yxx

2b22

联立可得2

1cbc

xy

22b

因为

b2c

0,所以bbcb2c0,1卩1bbc0,2b

所以

c,即b2

所以

222

bc2c,

所以

㊁1,则0e

a22

故答案为:

0号

 

Fi、F2,且两条曲线在第一象限的焦

15.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为

点为P,PF1F2是以PF,为底边的等腰三角形,若

PF110,椭圆与双曲线的离心率分别为©、e2,则

 

ed1的取值范围是

【解析】

设PF,

设椭圆和双曲线的焦距为2cc0,设椭圆的长轴长为2a,双曲线的实轴长为2a2,

PF2

由于PRF2是以PR为底边的等腰三角形,且PR

由椭圆的定义可得m

n2a1,由双曲线的定义可得

10,

m10,

2a2,

2c,

a15c,a25

由三角形三边关系可得

由离心率公式可得ee2

PF2

a1

F1F2PF1,即4c

10,

2

cccc

2

a25c5c25c

1

2513,

21c

44

则eq17因此,qd1的取值范围是

33

故答案为:

3

16•已知点FuF2分别是双曲线

2

C:

x2^21b0的左、右焦点,0为坐标原点,点P在双曲线C的右b

支上,且满足F,F2

2OP,

tan

PF2R4,则双曲线C的离心率的取值范围为

【答案】

【解析】

2OP,可得|0P|

故PFiF2为直角三角形,且PF1

PF2,

.222

•-|PF1||PF2||F1F2|•

由双曲线定义可得|PFi|

|PF212a•

•/tan

PF2F1

•••PF1

4PF2,可得

PF2

又(2a

PF2)2|PF2|2

2a

3

4c2,

整理得(PF2a)

2c2

•-(PF2a)22c2

/2a、2

a)

25a2

9

C217

a29,

17、17

e丁,即双曲线C的离心率的取值范围为(1,三]•

答案:

(1,

17.已知F1、F2分别是双曲线

—22

ab1

(a>0,b>0)的左、右焦点,若双曲线的右支上存在一点P,

UJU

使得(OP

luuruuLUi

OF2)?

F2P

(0为坐标原点)

,且|PF1|、、3|PF2|,则双曲线的离心率的取值范围是

【答案】1

e1、、3

【解析】

uuur

UJUUUU

(OPOF2)?

F2P0,即为

UUJUJUJ

(OP0F2)?

(OP0F2)=0,

uuuujun

即为OP^CJFJ2,可得|OP|=c,

即有/F1PF2=90°设

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 高中教育

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1