层次分析法模型.docx
《层次分析法模型.docx》由会员分享,可在线阅读,更多相关《层次分析法模型.docx(9页珍藏版)》请在冰豆网上搜索。
层次分析法模型
二、模型的假设
1、假设我们所统计和分析的数据,都是客观真实的;
2、在考虑影响毕业生就业的因素时,假设我们所选取的样本为简单随机抽样,具有典型性和普遍性,基本上能够集中反映毕业生就业实际情况;
3、在数据计算过程中,假设误差在合理范围之内,对数据结果的影响可以忽略.
三、符号说明
层次分析法
模型
0
标指量度性致
0
素因
C
Xam
Q
量第对方个层三第中型模
RC
率比性致
Q
量向权化归
灰色关联度模型
列召“纠
0
/V
A
k
Xi
-k/V
O
X
Xam
A
\7k
/V
Xi
△min
minmjnxo(k)-xE
ik
灼k
第k个指标的权重
V
i
m
加权关联度,即迟匕j(kbk
k
主成分分析模型
EXi
Xi的期望值
DXi
Xj的方差
Ro
所有单位向量的集合
R
样本相关矩阵
□i
单位特征向量
四、模型的分析与建立
1、问题背景的理解
随着我国改革开放的不断深入,经济转轨加速,社会转型加剧,受高校毕业生总量的增加,劳动用工管理与社会保障制度,劳动力市场的不尽完善,以及高校的毕业生部分择业期望过高等因素的影响,如今的毕业生就业形势较为严峻.为了更好地解决广大学生就业中的问题,就需要客观地、全面地分析和评价毕业生就业的若干主要因素,并将它们从主到次依秩排序•
针对不同专业的毕业生评价其就业情况,并给出某一专业的毕业生具体的就业策略.
2、方法模型的建立
(1)层次分析法
层次分析法介绍:
层次分析法是一种定性与定量相结合的、系统化、层次化的分析方法,它用来帮助我们处理决策问题•特别是考虑的因素较多的决策问题,而且各个因素的重要性、影响力、或者优先程度难以量化的时候,层次分析法为我们提供了一种科学的决策方法•
通过相互比较确定各准则对于目标的权重,及各方案对于每一准则的权重•
这些权重在人的思维过程中通常是定性的,而在层次分析法中则要给出得到权重的定量方法•
我们现在主要对各个因素分配合理的权重,而权重的计算一般用美国运筹学
家「L.Saaty教授提出的AH法.
(2)具体计算权重的AHP法
AHP法是将各要素配对比较,根据各要素的相对重要程度进行判断,再根据计算成对比较矩阵的特征值获得权重向量Wk.
Stepl.构造成对比较矩阵
假设比较某一层k个因素01,02/,ck对上一层因素:
的影响,每次两个
因素Ci和Cj,用Cij表示Ci和Cj对:
的影响之比,全部比较结果构成成对比较矩阵c,也叫正互反矩阵.
1
C=(Cij)k*k,Cij0,Cij,Cii=1.Cji
若正互反矩阵c元素成立等式:
二Cik,则称c一致性矩阵.
含义
标度Gj
Ci与Cj的影响相同
Ci比Cj的影响稍强
Ci比Cj的影响强
Ci比Cj的影响明显地强
Ci比Cj的影响绝对地强
2,4,6,8
Ci与Cj的影响之比在上述两个相邻等
级之间
Ci与Cj影响之比为上面aij的互反数
Step2.计算该矩阵的权重
通过解正互反矩阵的特征值,可求得相应的特征向量,经归一化后即为权重向量Qk=[q1k,q2k,…,qkk]T,其中的qik就是Ci对'的相对权重.由特征方程
A-入1=0,利用Mathematica软件包可以求出最大的特征值人max和相应的特征向量.
Step3.一致性检验
1)为了度量判断的可靠程度,可计算此时的一致性度量指标CI
其中?
表示矩阵C的最大特征值,式中k正互反矩阵的阶数,CI越小,说明
--max
权重的可靠性越高
随机一致性指标,可查表找到)可认为判断是满意的,此时的正互反矩阵称之为一致性矩阵.进入Step4.否则说明矛盾,应重新修正该正互反矩阵转入Step2.
Step4.得到最终权值向量
将该一致性矩阵任一列或任一行向量归一化就得到所需的权重向量.
计算出来的准则层对目标层的权重即不同因素的最终权重,这样一来,我们就可
以按权重大小将进行排序了.
(3)组合权向量的计算
成对比较矩阵显然非常好体现了我们研究对象一一各个因素之间权重的比较状态,能够有效地全面而深刻地表现出有关的数据信息,显然也是矩阵数学模
型的重要应用价值.因素往往是有层次的,我们经常在进行决策分析时,要进行多方面、多角度、多层次的分析与研究,把我们的决策选择建立在深刻而广泛的分析研究基础之上的•一个总的指标下面可以有第一层次的各个方面的指标、因素、成份、特征性质、组成成分等等,而每个这种因素又有新的成份在里面•这
就是决策分析的数学模型的真正的意义之所在.
定理1:
对于三决策问题,假设第一层只有一个因素,即这是总的目标,决
策总是最后要集中在一个总目标基础之上的东西,然后才能进行最后的比较.又
T
wS2))
假设第二层和第三层因素各有n、m个,并且记第二层对第一层的权向量(即构成成份的数量大小、成份的比例、影响程度的大小的数量化指标的量化结果、所拥有的这种属性的程度大小等等多方面的事情的量化的结果)为:
wjw
(2),w窘
而第3层对第2层的全向量分别是:
wn(wk3),wk計
这表示第3层的权重大小,具体表示的是第2层中第k个因素所拥有的面对下一层次的m个同类因素进行分析对比所产生的数量指标.那么显然,第三层的因素相对于第一层的因素而言,其权重应当是:
先构造矩阵,用wk3)为列向量构造
一个方阵“/3)_(⑶⑶…⑶、
丨万阵W_(W1,W2,Wn),
这个矩阵的第一行是第3层次的m个因素中的第1个因素,通过第2层次的n个
因素传递给第1层次因素的权重,故第3层次的m个因素中的第i个因素对第1
n
层次的权重为Vwfw?
,从而可以统一表示为:
⑴⑶⑵
w二Ww,
(一般是方案层)中每一个因素相对总目标的量化指
k4
它的每一行表示的就是二层
标•
定理2:
一般公式
如果共有s层,则第k层对第一层(设只有一个因素)的组合权向量为
(k)(k)(k」)
w=Ww,k=3,4,s,
其中矩阵W"的第i行表示第k层中的第i个因素,相对于第k_1层中每个因素的权向量;而列向量w(kJ)则表示的是第k-1层中每个因素关于第一层总
目标的权重向量•
于是,最下层对最上层的的组合权向量为:
(s)(s)(S_1)⑶
(2)
w=WW…Ww,
实际上这是一个从左向右的递推形式的向量运算•逐个得出每一层的各个因
素关于第一层总目标因素的权重向量•
(4)灰色关联度综合评价法
灰色系统的关联分析主要是对系统动态发展过程的量化分析,它是根据因素
之间发展态势的相似或相异程度,来衡量因素间接近的程度,实质上就是各评价对象与理想对象的接近程度,评价对象与理想对象越接近,其关联度就越大•关
联序则反映了各评价对象对理想对象的接近次序,即评价对象与理想对象接近程度的先后次序,其中关联度最大的评价对象为最优•因此,可利用关联序对所要评价的对象进行排序比较•利用灰色关联度进行综合评价的步骤如下:
1)用表格方式列出所有被评价对象的指标•
2)由于指标序列间的数据不存在运算关系,因此必须对数据进行无量纲化处理•
3)构造理想对象,即把无量纲化处理后评价对象中每一项指标的最佳值作为理想对象的指标值•
4)计算指标关联系数•其计算公式为:
△.+Pa
minmax
i(k";.(k)「
imax
其中
虫min=m.inmjnxo(k)—Xi(k),△max=maxmaxxo(k)—Xi(k),心i(k)=
ikik
X°(k)-Xi(k),i=12…n,k=1,2,…m・
式中n为评价对象的个数;m为评价对象指标的个数;i(k)为第i个对象第k个
i
指标对理想对象同一指标的关联系数;A表示在各评价对象第k个指标值与理想对象第k个指标值的最小绝对差的基础上,再按i=1,2,…,n找出所有最小绝对差
max
绝对差的基础上,再按i=1,2,…,n找出所有最大绝对差中的最大值;卜min为评价对象第k个指标值与理想对象第k个指标值的绝对差.;、为分辨系数,t越小分辨力越大,一般t的取值区间[0,1],更一般地取=0.5.
5)确立层次分析模型.
6)确定判断矩阵,计算各层次加权系数及加权关联度,加权关联度的计算公
m
式为:
Y广瓦ti(k^k,式中7为第i个评价对象对理想对象的加权关联度,cok为iki
第k个指标的权重.
7)依加权关联度的大小,对各评价对象进行排序,建立评价对象的关联序,
从而可以得出关联度较大的对象,关联度越大其综合评价结果也越好.
(5)线性回归分析法
假如对象(因变量)y与p个因素(自变量)ox?
厂,Xp的关系是线性的,
为研究他们之间定量关系式,做n次抽样,每一次抽样可能发生的对象之值为
yy,yn
它们是在因素Xi(i=1,2,…,p)数值已经发生的条件下随机发生的.把第j次观测
的因素数值记为:
Xu,X2j,,Xa(j"2…n)
那么可以假设有如下的结构表达式:
y^P。
+卩1X11"'+3pX1p+e1
y"。
+卩用+…+卩pX2p^2
y^^1Xn^'1pXnP;3
其中,P0,P1,…¥P是P+1个待估计参数,名汹2,…,名n是n个相互独立且服
从同一正态分布N(0,;「2)的随机变量.这就是多元线性回归的数学模型
y1
广1
Xu
X12
xJ
若令y=
y2
,X=
1
X21
X22
X2p
1
Xn1
Xn2
Xnp;
则上面多元线性回归的数学模型可以写成矩阵形式:
八b。
bxibpXp
式中,bo,bi,b2,bp分力」^为o,i,,p的估计.
(6)主成分分析法
1)主成分的定义
设有P个随机变量X1,X2,…,XP,它们可能线性相关,通过某种线性变换,找到
rp2
的分析.
3)主成分分析的一般步骤第一步、选择主成分
设X的样本数据经过数据预处理后计算出的样本相关矩阵为
f4…\
1r12r1p
1*T«■*
R^n/X)(X)=(「ij)=
r211r2p
■■.■<■・..・■■
■■E彳
由特征方程R-九1|=0,求出P个非负实根,并按值从大到小进行排列:
‘1-’2亠亠—-°.
将「带入下列方程组,求出单位特征向量:
.i
(R-,il)篇j=0,i=1,2,,m
确定m的方法是使前m个主成分的累计贡献率达到85%左右.
第二步、利用主成分进行分析
在实际分析时,通常把特征向量的各个分量的取值大小和符号(正负)进行对照
比较,往往能对主成分的直观意义作出合理的解释.利用主成分可以进行以下分
析:
a)对原指标进行分类;
b)对原指标进行选择;
c)对样品进行分类;
d)对样品进行排序;
e)预测分析.