现浇箱梁支架方案计算书贝雷片+顶托03980.docx

上传人:b****5 文档编号:4552782 上传时间:2022-12-06 格式:DOCX 页数:26 大小:186.27KB
下载 相关 举报
现浇箱梁支架方案计算书贝雷片+顶托03980.docx_第1页
第1页 / 共26页
现浇箱梁支架方案计算书贝雷片+顶托03980.docx_第2页
第2页 / 共26页
现浇箱梁支架方案计算书贝雷片+顶托03980.docx_第3页
第3页 / 共26页
现浇箱梁支架方案计算书贝雷片+顶托03980.docx_第4页
第4页 / 共26页
现浇箱梁支架方案计算书贝雷片+顶托03980.docx_第5页
第5页 / 共26页
点击查看更多>>
下载资源
资源描述

现浇箱梁支架方案计算书贝雷片+顶托03980.docx

《现浇箱梁支架方案计算书贝雷片+顶托03980.docx》由会员分享,可在线阅读,更多相关《现浇箱梁支架方案计算书贝雷片+顶托03980.docx(26页珍藏版)》请在冰豆网上搜索。

现浇箱梁支架方案计算书贝雷片+顶托03980.docx

现浇箱梁支架方案计算书贝雷片+顶托03980

福清项目现浇箱梁支架方案计算书

钢管桩+贝雷梁+顶托支架方案

1、方案概况

1.1编制依据

(1)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)。

(2)《公路桥涵钢结构及木结构设计规范》(JTJ025-86)。

(3)《公路桥涵施工技术规范》(JTG/TF50-2011)。

(4)《公路桥涵地基与基础设计规范》(JTGD63-2007)。

(5)《建筑施工碗扣式脚手架安全技术规范》(JGJ166-2008)。

(6)《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)。

(7)《建筑结构荷载规范》(GB50009-2012)。

(8)《木结构设计规范》(GB50005-2003)。

(9)《桩基工程手册》(第二版)。

(10)《建筑施工模板安全技术规范》(JGJ162-2008)。

(11)《钢结构设计规范》(GB50017-2014)。

(12)《建筑地基基础设计规范》(GB50007-2011)。

1.2工程概况

(35m+60m+35m)变截面连续箱梁采用单箱双室预应力混凝土连续箱梁,单幅箱梁顶板宽20m,底板宽14.5m,悬臂长度2.75m,横桥向箱梁顶底板保持水平,桥面横坡通过箱梁绕设计高位置整体旋转形成;跨中梁高1.8m,支点梁高3.5m,悬浇部分梁高按2次抛物线规律变化;箱梁顶板厚度28cm;跨中腹板厚度50cm,支点腹板厚度70cm,腹板厚度按分段等厚规律变化,渐变段通过2个现浇块实现;跨中底板厚度30cm,支点底板厚度60cm,悬浇部分底板厚度按2次抛物线规律变化;箱梁分别在中支点、梁端设置横隔梁,中支点处横梁厚200cm,梁端横梁厚145cm。

2、方案计算

2.1支架计算荷载的取用原则

2.1.1设计荷载

根据《公路桥涵施工技术规范》JTG/TF50-2011第5.2.6条:

计算模板、支架和拱架时,应考虑下列荷载并按表4.1.1进行荷载组合。

(1)箱梁砼自重;

⑵模板、支架自重;

⑶施工人员和施工材料、施工设备等荷载;

⑷风荷载;

荷载组合:

(1)不组合风荷载:

(2)组合

2.1.2普通模板荷载计算见《桥梁施工工程师手册》7-1-1、7-1-2

⑴新浇筑混凝土和钢筋混凝土的容重:

混凝土26kN/m3。

⑵模板、支架和拱架的容重按设计图纸计算确定。

⑶施工人员和施工材料、机具行走运输或堆放荷载标准值:

①计算模板及直接支承模板的小棱时,均布荷载可取2.5kPa,另外以集中荷载2.5kN进行验算;

②计算直接支承小棱的梁时,均布荷载可取1.5kPa;

③计算支架立柱时,均布荷载可取1.0kPa;

④有实际资料时按实际取值。

⑷振捣混凝土时产生的荷载(作用范围在有效压头高度之内):

对水平模板为2.0kPa;对垂直面模板为4.0kPa。

⑸新浇筑混凝土对模板侧面的压力:

采用内部振捣器,当混凝土的浇筑速度在6m/h以下时,新浇筑的普通混凝土作用于模板的最大侧压力可按式(2—1)和(2—2)计算:

Pmax=0.22γtok1k2v1/2(2—1)

Pmax=γh(2—2)

式中:

Pmax—新浇筑混凝土对模板的最大侧压力(kPa)

h—为有效压头高度(m)

V—混凝土的浇筑速度(m/h)

t0—新浇筑混凝土的初凝时间(h)。

可按实测确定:

γ—混凝土的容重(kN/m3)

k1—外加剂影响正系数,不掺外加剂时取1.0,掺缓凝作用的外加剂时取1.2;

k2—混凝土塌落度影响正系数,当塌落度小于30mm时,取0.85;50至90mm时,取1.0;110至150mm时取1.15。

本设计检算按(2-2)计算。

⑹倾倒混凝土时产生的水平荷载:

倾倒混凝土时对垂直面模板产生的水平荷载表2-1-2采用。

本计算取2.0kPa。

表2-1-2倾倒混凝土时产生的水平荷载

向模板中供料方法

水平荷载(kPa)

用溜槽、串筒或导管输出

2.0

用容量0.2及小于0.2m3的运输器具倾倒

2.0

用容量大于0.2至0.8m3的运输器具倾倒

4.0

用容量大于0.8m3的运输器具倾倒

6.0

 

⑺其他可能产生的荷载:

如雪荷载、冬季保温设施荷载等,按实际情况考虑。

(本计算按荷载为0考虑)。

2.2使用材料

混凝土:

γ砼=26.0kN/m3。

竹胶板:

γ竹胶板=9.0kN/m3;[σw]=11.45Mpa;E=6.0×103Mpa(优质品);δ=0.015m;长×宽=2.44×1.22m。

方木:

γ木=5.0kN/m3;[σw]=12.0Mpa;E=9.0×103Mpa(马尾松)。

(路桥施工计算手册表8-6)

Φ28mm顶托,长70cm(暂定),托盘大小100×150mm;[σ]=140.0Mpa;E=2.1×105Mpa;A=6.2×10-4m2。

顶托、槽钢、螺栓每个总质量为5kg。

I16a:

q=0.205kN/m;[σ]=145.0Mpa;E=2.1×105Mpa;I=1.127×10-5m4;Wx=1.409×10-4m3;A=2.611×10-3m2。

(路桥施工计算手册附表3-31)

2.3荷载分析计算

2.3.1横断面荷载分布如下:

图2.3.1横断面荷载分布图

其中:

S1=0.9094m2,L1=2.572m,q1-1=S1/L1×γ砼=9.19kN/m;

S2=1.6692m2,L2=1.375m,q1-2=S2/L2×γ砼=31.56kN/m;

S3=2.0132m2,L3=3.813m,q1-3=S3/L3×γ砼=13.73kN/m;

S4=1.1704m2,L4=0.532m,q1-4=S4/L4×γ砼=57.2kN/m;

S5=2.0788m2,L5=3.902m,q1-5=S5/L5×γ砼=13.85kN/m;

2.4模板计算

箱梁梁端实体部位腹板位置处底模的受力最大,作为控制计算部位。

2.4.1荷载

本计算书偏安全计算以一次浇筑荷载进行计算。

根据设计图纸可查,混凝土容重取r=26kN/m3,支架设计荷载计算如下:

按纵向每1m宽度计:

⑴钢筋混凝土自重:

q1-4=2.2×1.0×26.0=57.2kN/m。

⑵模板自重:

q2=0.015×1.0×9.0=0.135kN/m。

⑶施工荷载:

均布荷载2.5kN/m2;集中荷载2.5kN(验算荷载)

q3=2.5×1.0=2.5kN/m;p=2.5kN(验算荷载)。

⑷振捣混凝土时产生的荷载:

2.0kN/m2

q4=2.0×1.0=2.0kN/m。

荷载组合:

组合Ⅰ:

q=q1-4+q2+q3+q4=0.135+57.2+2.5+2.0=61.835kN/m

P=0

组合Ⅱ:

q=q1-4+q2+q4=0.135+57.2+2.0=59.335kN/m

P=2.5kN

组合Ⅲ:

q=q1-4+q2=0.135+57.2=57.335kN/m

2.4.2模板(底模)强度验算

(1)计算模式:

由于竹胶板底模下布置木横梁(10×10×400cm),中对中间距25cm,净间距15cm。

本计算按五跨连续梁计算:

 

图2-4-2受力简图

(2)截面特性:

A=b×h=1.0×0.015=0.015m2

W=bh2/6=1.0×0.0152/6=3.75×10-5m3

I=bh3/12=1.0×0.0153/12=2.8125×10-7m4

(3)强度验算

采用荷载组合Ⅰ,施工荷载按均布荷载时:

Mmax=0.105ql2+0.158pl(路桥施工计算手册附表2-11)

=0.105×61.835×0.152+0

=0.146kN·m

则:

σmax=Mmax/W

=0.146/(3.75×10-5)×10-3

=3.89Mpa<[σw]=11.45Mpa

满足正截面承载力要求!

采用荷载组合Ⅱ进行验算

 

 

图2-4-2受力简图

M=0.105ql2+0.158pl

=0.105×59.335×0.152+0.158×2.5×0.15=0.2kN·m

则:

σ=M/W

=0.2/(3.75×10-5)×10-3

=5.3Mpa<[σw]=11.45Mpa满足要求!

2.4.3刚度验算

采用荷载组合Ⅲ进行计算:

q=q1+q2=0.135+57.2=57.335kN/m

F=(0.664ql4+1.097pl3)/100EI(路桥施工计算手册附表2-11)

=(0.664×57.335×0.154+0)/(100×6.0×106×2.8125×10-7)

=0.12mm<[f]=0.15/400=0.0025m=0.375mm满足要求!

当验算模板及其支架的刚度时,其最大变形不得超过下列允许值(路桥施工计算手册表8-11):

(1)、结构表面外露的模板,为模板构件计算跨度的1/400;

(2)、结构表面隐藏的模板,为模板构件计算跨度的1/250;

(3)、支架的压缩变形值或弹性挠度,为相应构件计算跨度的1/1000。

结论:

竹胶板其正截面弯曲强度、刚度满足其容许承载力要求!

2.510×10木横梁计算

墩顶梁下的横木受力最大,梁高2.2m的实体梁,该部分横木作为控制计算部位。

木横梁为10×10×400cm的方木,方木横桥向布设,横木中对中间距为25cm。

2.5.1荷载

横木中对中间距25cm,故每根承受0.25m宽度范围荷载,按纵向每0.25m计算。

⑴模板、横木自重:

q1=0.015×0.25×9.0+0.1×0.1×5.0=0.084kN/m。

⑵混凝土自重:

q2=2.2×0.25×26.0=14.3kN/m。

⑶施工荷载:

均布荷载2.5kN/m2集中荷载2.5kN(验算荷载)

q3=2.5×0.25=0.63kN/mp=2.5kN(验算荷载)。

⑷振捣混凝土时产生的荷载:

2.0kN/m2

q4=2.0×0.25=0.5kN/m。

荷载组合:

组合Ⅰ:

q=q1+q2+q3+q4=0.084+14.3+0.63+0.5=15.514kN/m

P=0kN

组合Ⅱ:

q=q1+q2+q4=0.084+14.3+0.5=14.884kN/m

P=2.5kN

组合Ⅲ:

q=q1+q2=0.084+14.3=14.384kN/m

2.5.2强度验算

⑴计算模式:

按两跨连续梁计算

 

图2-5-1受力简图

⑵截面特性:

A=b×h=0.10×0.10=0.01m2

W=bh2/6=0.10×0.102/6=1.67×10-4m3

I=bh3/12=0.10×0.103/12=8.33×10-6m4

强度验算

采用荷载组合Ⅰ进行强度验算时:

Mmax=MB=0.125ql2+0.188pl(路桥施工计算手册附表2-8)

=0.125×15.514×0.62

=0.7kN·m

则:

σmax=Mmax/W

=0.7/(1.67×10-4)×10-3

=4.2Mpa<[σw]=12.0Mpa满足要求!

采用荷载组合Ⅱ验算

 

图2-5-2受力简图

M=0.125ql2+0.188pl

=0.125×14.884×0.62+0.188×2.5×0.6=0.95kN·m

则:

σ=MB/W=0.95/(1.67×10-4)×10-3

=5.7Mpa<[σw]=12.0Mpa满足要求!

2.5.3刚度验算

⑴采用荷载组合Ⅲ:

q=q1+q2=0.084+14.3=14.384kN/m

⑵刚度验算

fmax=(0.521ql4+0.911pl3)/100EI(路桥施工计算手册附表2-8)

=(0.521×14.384×0.64+0)×103/(100×9.0×109×8.33×10-6)

=0.13mm<[f]=0.6/400=1.5mm。

满足要求!

方木横梁承载力验算结论:

根据以上验算的结果,现浇梁底板处横向设置10×10×400cm的方木横梁,纵向中对中间距25cm,跨径为60、90cm。

其正截面弯曲强度、刚度满足其容许承载力要求!

2.6I10纵梁计算

纵梁布设腹板部位下其横向间距为45cm,纵向顶托间距90cm;箱室部位和翼缘板部位横向间距为90cm,纵向顶托间距90cm;在梁端实体部分纵向顶托间距60cm。

因此计算工况腹板横向间距为45cm,纵向间距90cm时纵梁受力和工况梁端实体部分横向间距为90cm,纵向间距60cm时纵梁受力。

I10:

q=0.112kN/m;[σ]=145.0Mpa;E=2.1×105Mpa;I=0.245×10-5m4;Wx=0.49×10-4m3;A=1.433×10-3m2。

(路桥施工计算手册附表3-31)

2.6.1工况腹板横向间距为45cm,纵向间距90cm时纵梁受力

2.6.1.1荷载

纵梁上木横梁按纵向间距0.25m均匀排列。

拟定纵梁以上荷载在纵向0.25m范围内为集中荷载,则:

⑴模板、木横梁:

P1=0.015×0.45×0.25×9+0.1×0.1×0.45×5=0.038kN

纵梁自重:

q1=0.112kN/m

⑵混凝土自重:

P2=2.2×0.45×0.25×26.0=6.435kN。

⑶施工荷载:

均布荷载2.5kN/m2集中荷载2.5kN(验算荷载)

q3=2.5×0.45=1.125kN/mp=2.5kN(验算荷载)

⑷振捣混凝土时产生的荷载:

2.0kN/m2

q4=2.0×0.45=0.9kN/m。

2.6.1.2强度验算

⑴计算模式:

按简支梁计算。

图2-6-1受力简图

⑵荷载组合I:

q=q1+q3+q4=0.112+1.125+0.9=2.14kN/m

P横=P1+P2=0.038+6.435=6.47kN

荷载组合Ⅱ:

q=q1+q4=0.112+0.9=1.012kN/m

P横=P1+P2=0.038+6.435=6.47kN

P中=2.5kN

荷载组合Ⅲ:

q=q1=0.112kN/m

P横=P1+P2=0.038+6.435=6.47kN

⑷强度验算:

用荷载组合I进行验算:

M=1/8ql2+2P横×0.45-P横×0.125-P横×0.375

=1/8×2.14×0.92+6.47×(2×0.45-0.125-0.375)

=2.81kN·m

则:

σ=M/W=2.81/(0.49×10-4)×10-3=57.3Mpa<[σw]=145Mpa满足要求!

用荷载组合

进行验算:

M=1/8ql2+(4横+P中)/2×0.45-P横×0.125-P横×0.375

=1/8×1.012×0.92+(4×6.47+2.5)/2×0.45-6.47×(0.125+0.375)

=3.25kN·m

则:

σ=M/W=3.25/(0.49×10-4)×10-3=66.4Mpa<[σw]=145Mpa满足要求!

2.6.1.3刚度验算

⑴荷载组合Ⅲ

q=q1=0.112kN/m

P横=P1+P2=0.038+6.435=6.47kN

⑵刚度验算

(施工结构计算方法与设计手册表10-16)

=[(5×0.112×0.94/384+6.47×0.075(3×0.92-4×0.052)/24+6.47×0.325(3×0.92-4×0.3252)/24]/(2.1×105×0.245×10-5)

=0.44mm<[f]=0.9/400=2.25mm满足要求!

2.6.2工况梁端实体部分横向间距为90cm,纵向间距60cm时纵梁受力

2.6.2.1荷载

纵梁上木横梁按纵向间距0.25m均匀排列。

拟定纵梁以上荷载在纵向0.25m范围内为集中荷载,则:

⑴模板、木横梁:

P1=0.015×0.9×0.25×9.0+0.1×0.1×0.9×5.0=0.075kN

纵梁自重:

q1=0.112kN/m

⑵混凝土自重:

P2=2.2×0.9×0.25×26.0=12.87kN。

⑶施工荷载:

均布荷载2.5kN/m2集中荷载2.5kN(验算荷载)

q3=2.5×0.9=2.25kN/mp=2.5kN(验算荷载)

⑷振捣混凝土时产生的荷载:

2.0kN/m2

q4=2.0×0.9=1.8kN/m。

2.6.2.2强度验算

⑴计算模式:

按简支梁计算。

图2-6-2受力简图

⑵荷载组合I:

q=q1+q3+q4=0.112+2.25+1.8=4.162kN/m

P横=P1+P2=0.075+12.87=12.95kN

荷载组合Ⅱ:

q=q1+q4=0.112+1.8=1.29kN/m

P横=P1+P2=0.075+12.87=12.95kN

P中=2.5kN

荷载组合Ⅲ:

q=q1=0.112kN/m

P横=P1+P2=0.075+12.87=12.95kN

⑶强度验算:

用荷载组合I进行验算:

M=1/8ql2+(3P横)/2×0.3-P横×0.25

=1/8×4.162×0.62+3×12.95/2×0.3-12.95×0.25

=2.78kN·m

则:

σ=M/W=2.78/(0.49×10-4)×10-3=56.7Mpa<[σw]=145Mpa满足要求!

用荷载组合

进行验算:

M=1/8ql2+(3P横+P中)/2×0.3-P横×0.25

=1/8×1.29×0.62+(3×12.95+2.5)/2×0.3-12.95×0.25

=3.023kN·m

则:

σ=M/W=3.023/(0.49×10-4)×10-3=61.7Mpa<[σw]=145Mpa满足要求!

2.6.2.3刚度验算

⑴荷载组合Ⅲ

q=q1=0.112kN/m

P横=P1+P2=0.075+12.87=12.95kN

⑵刚度验算

=[(5×0.112×0.64/384+12.95×0.63/48+12.95×0.052×(3×0.6-4×0.05)/6)]/(2.1×105×0.245×10-5)

=0.13mm<[f]=0.6/400=1.5mm满足要求!

工字钢纵梁承载力验算结论:

根据以上验算的结果,现浇梁底腹板部位下设置60×90cm纵梁,箱室和翼缘板部位下设置90×90cm纵梁,梁端实体部分顶托间距设置为60cm。

经过验算其正截面弯曲强度、刚度满足其容许承载力要求!

2.7顶托计算

本方案采用贝雷片弦杆上反扣[6.3槽钢,槽钢打孔,然后插入顶托,采用直径Φ28mm顶托,长70cm(暂定),托盘大小100×150mm,顶托插入贝雷片用上下螺栓进行固定。

Φ28mm顶托,长50cm(暂定),托盘大小100×150mm,:

q=0.05kN/m;[σ]=140.0Mpa;E=2.1×105Mpa;A=6.15×10-4m2。

顶托立杆布置分为三种:

在梁端实体部位的间距90×60cm和45×60cm;在箱梁腹板等实体部位的间距45×90cm;箱室、悬臂板部位的间距90×90cm。

为保证横坡坡度,高的一端顶托高度调节为15cm,以此来控制贝雷片标高。

具体布置图见详细设计图纸。

以梁端实体部位杆间距90×60cm进行计算:

荷载分析:

顶托以上模板体系荷载:

q1=0.015×0.6×9.0+0.1×0.1×0.6×5×4(平均根数)+0.112=0.313kN/m。

钢筋混凝土荷载:

q2=2.2×0.6×26=34.32kN/m。

施工荷载:

q3=2.5×0.9=2.25kN/m。

振捣混凝土时产生的荷载:

q4=2.0×0.9=1.8kN/m。

最不利荷载位置计算:

箱梁实体端顶托间距为60×90cm处:

恒载:

支架以上模板体系荷载:

p1=0.313×0.9=0.28kN;

混凝土梁高2.2m:

p2=34.32×0.9=30.8kN;

施工荷载:

p3=2.25×0.6=1.35kN;

振捣混凝土时产生的荷载取p4=1.8×0.6=1.08kN。

P=P1+P2+P3+P4

=0.28+30.8+1.35+1.08=33.5kN。

σ=P/A=33.5/6.15×10-4=54.5Mpa<[σw]=140Mpa

满足要求。

2.8贝雷片受力检算

单片贝雷:

每片贝雷重300kg(含支撑架、销子等),I=250497.2cm4,E=2×105Mpa,W=3570cm3,[M]=975kN·m。

贝雷架采用材料的容许应力按基本应力提高30%(查《公路施工手册》.桥涵1043页)。

贝雷片具体参数如下:

材料:

16Mn,弦杆2[10a槽钢(C100×48×5.3/8.5,间距8cm),腹杆I8(h=80mm,b=50mm,tf=4.5mm,tw=6.5mm),贝雷片的连接为销接。

两片贝雷片为一组,受力图示如下:

若对贝雷片进行受力分析则4区每片贝雷片受力最大,作为控制计算部位。

此部位布置两组贝雷片,纵向最大跨径9.0m,其横向受力范围2.25m。

则:

⑴混凝土、模板、木横梁、纵梁自重:

q1=24.21×2.25/4+0.015×0.45×9.0+0.1×0.1×0.45×5.0×4+0.112+0.03=13.9kN/m

⑵贝雷片自重:

q2=1kN/m。

⑶施工荷载:

施工荷载:

均布荷载2.5kN/m2集中荷载2.5kN(验算荷载)

q3=2.5×0.45=1.125kN/mp=2.5kN(验算荷载)

⑷振捣混凝土时产生的荷载:

2.0kN/m2q4=2×0.45=0.9kN/m

2.9.2强度验算

⑴计算模式:

按简支梁计算。

图2-9-2受力简图

⑵荷载组合:

q=q1+q2+q3+q4=13.9+1+1.125+0.9=16.925kN/m

⑶强度验算:

用荷载组合进行验算:

M=1/8ql2

=1/8×16.925×92=171.4kN·m<[M]=975kN·m

2.9.3刚度验算

⑴荷载组合

q=q1+q2=13.9+1=14.9kN/m

⑵刚度验算

(施工结构计算方法与设计手册表10-16)

=(5×14.9×94/384)/(2×105×2.5×10-3)

=2.55mm<[f]=9/400=22.5mm满足要求!

2.9.4贝雷片立杆稳定性计算

Fmax=16.925×9/2=76.2kN;

=472kN;

临界压力与实际最大压力之比,为压杆的工作安全因数,即

立杆稳定性满足要求。

压应力:

<[δ]=260MPa(16锰钢);

则,立杆压应力满足要求。

2.9桩顶横梁检算

I40b:

q=0.7384kN/m;[σ]=145.0Mpa;E=2.1×105Mpa;I=2.278×10-4m4;Wx=1.139×10-3m3;A=9.407×10-3m2。

(路桥施工计算手册附表3-31)

工况一:

在混凝土浇筑时按集中荷载进行计算

(一)根据管桩平面布置图,桩顶横梁bc段受力最大进行计算。

则:

1)对荷载进行分析

⑴模板、木横梁、纵梁、贝雷片自重:

q1=6×0.015×9+[0.1×0.1×20×5×6/0.25(根数)+0.112×6×28+9.8+1×6×28]/19.25=11.55kN/m

⑵双拼I40b自重:

q2=1.477kN/m

⑶施工荷载:

均布荷载1.5kN/m2

q3=1.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1