户用型中小功率独立光伏逆变器大学本科毕业论文.docx

上传人:b****4 文档编号:4473123 上传时间:2022-12-01 格式:DOCX 页数:4 大小:20.86KB
下载 相关 举报
户用型中小功率独立光伏逆变器大学本科毕业论文.docx_第1页
第1页 / 共4页
户用型中小功率独立光伏逆变器大学本科毕业论文.docx_第2页
第2页 / 共4页
户用型中小功率独立光伏逆变器大学本科毕业论文.docx_第3页
第3页 / 共4页
户用型中小功率独立光伏逆变器大学本科毕业论文.docx_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

户用型中小功率独立光伏逆变器大学本科毕业论文.docx

《户用型中小功率独立光伏逆变器大学本科毕业论文.docx》由会员分享,可在线阅读,更多相关《户用型中小功率独立光伏逆变器大学本科毕业论文.docx(4页珍藏版)》请在冰豆网上搜索。

户用型中小功率独立光伏逆变器大学本科毕业论文.docx

户用型中小功率独立光伏逆变器大学本科毕业论文

户用型中小功率独立光伏逆变器大学本科毕业论文

            毕业设计  题目  户用型中小功率独立光伏发电  系统的研究与设计      毕业设计专用纸    摘要  太阳能光伏发电是一种将太阳光辐射能量直接转化为电能的发电技术,它是可再生能源和新能源的重要组成部分,被认为是当今世界上最有发展前景的新能源技术。

打印部分:

83031

      毕业设计专用纸    1绪论  太阳能光伏发电技术  太阳能光伏发电的概况  随着人类工业化的进程,人类对能源的需求不断增长,与此同时,也带来了不可再生能源的日渐减少和环境污染的日益严重等问题。

面对全球范围内的能源危机和环境压力,人类要解决能源问题,实现可持续发展,只能依靠科技进步,大规模开发利用可再生能源和新能源。

太阳能以其独有的优势而成为人们重视的焦点,丰富的太阳辐射能是重要的可再生能源,取之不尽、用之不竭、无污染、廉价、是人类能够自利用的能源。

太阳能光伏发电是一种将太阳光辐射能量直接转化为电能的发电技术,它是可再生能源和新能源的重要组成部分,被认为是当今世界上最有发展前景的新能源技术。

  太阳能光伏发电的发展现状及应用前景  世界太阳能光伏发电发展现状及前景  近几年国际上光伏发电快速发展,世界上已经建成了10多座兆瓦级光伏发电系统,6个兆瓦级的联网光伏电站。

美国是最早制定光伏发电的发展规划的国家。

1997年又提出“百万屋顶”计划。

日本1992年启动了新阳光计划,到2003年日本光伏组件生产占世界的50%,世界前10大厂商有4家在日本。

而德国新可再生能源法规定了光伏发电上网电价,大大推动了光伏市场和产业发展,使德国成为继日本之后世界光伏发电发展最快的国家。

瑞士、法国、意大利、西班牙、芬兰等国,也纷纷制定光伏发展计划,并投巨资进行技术开发和加速工业化进程。

  世界光伏组件在1990年—2005年年平均增长率约15%。

20世纪90年代后期,发展更加迅速,1999年光伏组件生产达到200兆瓦。

商品化电池效率从10%~13%提高到13%~15%,生产规模从1~5兆瓦/年发展到5~25兆瓦/年,并正在向50兆瓦甚至100兆瓦扩大。

光伏组件的生产成本降到3美元/瓦以下。

2006年的光伏行业调查表明,到2010年,光伏产业的年发展速度将保持在30%以上。

年销售额将从2004年的70亿美金增加到2010年的300亿美金。

  国内太阳能光伏发电发展现状及前景  1  毕业设计专用纸  中国太阳能资源非常丰富,理论储量达每年17000亿吨标准煤。

太阳能资源开发利用的潜力非常广阔,具有巨大的开发潜能。

中国光伏发电产业于20世纪70年代起步,90年代中期进入稳步发展时期。

太阳电池及组件产量逐年稳步增加。

经过30多年的努力,已迎来了快速发展的新阶段。

在“光明工程”先导项目和“送电到乡”工程等国家项目及世界光伏市场的有力拉动下,我国光伏发电产业迅猛发展。

  根据《可再生能源中长期发展规划》,到2020年,我国力争使太阳能发电装机容量达到,到2050年将达到600GW。

预计,到2050年,中国可再生能源的电力装机将占全国电力装机的25%,其中光伏发电装机将占到5%。

未来十几年,我国太阳能装机容量的复合增长率将高达25%以上。

  太阳能光伏发电的优点  太阳光辐射能经太阳能电池转换为电能,再经过能量存储、能量变换控制等环节,向负载提供合适的直流或者交流电能。

与常规发电及其他绿色能源发电技术相比,太刚能光伏发电技术有以优点:

  

(1)是真正的无污染排放、不破坏环境的可持续发展的绿色能源;

(2)能量具有广泛性,随处可得,不受地域的限制;(3)于无机械转动部件而运行可靠,故障率低;(4)维护简单,可以无人值守;  (5)应用场合广泛和灵活,既可以独立于电网运行,也可以与电网并网返行;(6)无需架设输电线路,可以方便地与建筑物相结合;  (7)建站周期短,规模大小随意,发电效率不随发电规模的大小而变。

  太阳能光伏发电系统  太阳能光伏发电的基本原理  太阳能光伏发电的基本原理是利用太阳能电池的光生伏特效应直接把太阳的辐射能转变为电能的一种发电方式,太阳能转化为电能的转换器件就是太阳能电池。

当太阳能光照射到P、N型两种不同导电类型的同质半导体材料构成的太阳能电池上时,其中一部分光线被反射,  2  毕业设计专用纸  一部分光线被吸收,还有一部分光线透过电池片。

被吸收的光能激发被束缚的高能级状态下的电子,产生电子—空穴对,在PN结的内建电场作用下,电子、空穴相互运动,N区的空穴向P区运动,P区的电子向N区运动,使太阳能电池的受光面有大量负电荷积累,而在电池的背光面有大量正电荷积累。

若在电池两端接上负载,负载上就有电流通过,当光线一直照射时,负载上将源源不断地有电流流过。

  太阳能光伏发电系统的分类  从结构特征上看,太阳能光伏发电系统可分为三种基本类型:

独立运行、并网型和混合型光伏发电系统。

  

(1)独立型光伏发电系统  独立型光伏发电系统的结构如图l-1所示。

独立型光伏系统一般屋顶的太阳能电池阵列、蓄电池、逆变器及控制系统组成,太阳能电池阵列将太阳光能量收集之后充电系统储存到蓄电池中。

在蓄电池没有充满的情况下,一般蓄电池提供电能进行逆变提供给用户,如果天气晴朗,当蓄电池充满电的情况下,也可以太阳能电池板直接提供电能进行逆变,用户可以根据天气情况和蓄电池剩余电量的多少来判断是蓄电池进行逆变还是直接太阳能电池板进行逆变过程。

  作为家用的小型系统,独立光伏系统有其独特的优势,它体积小,便于安装使用和维护,成本较小,于独立光伏系统中有并网系统所没有的蓄电池部分,所以可以应用更长时间,基本能够满足普通用户的需要。

独立光伏系统一般将太阳能转化为电能储存在蓄电池中,然后再通过逆变成为普通用户所使用的交流电。

    3  毕业设计专用纸  

(2)并网型光伏发电系统  并网型光伏发电系统的结构如图l-2所示。

并网光伏系统是指太阳能发出的直流电转化为和电网同频同相的交流电,既向负载供电,也可以向电网发电,可以分为带蓄电池的和不带蓄电池的并网发电系统。

带有蓄电池的并网发电系统具有可调度性,可以根据需要并入或退出电网,还具有备用电源的功能,当电网因故停电时可紧急供电。

带有蓄电池的光伏并网发电系统常常安装在居民建筑;不带蓄电池的并网发电系统不具备可调度性和备用电源的功能,一般安装在较大型的系统上。

    (3)混合型光伏发电系统  混合型光伏发电系统的结构如图l-3所示。

混合型光伏发电系统是在系统中增加一台备用发电机组,当光伏阵列发电不足或蓄电池容量不足时,可以启动备用发电机组,它既可以直接给交流负载供电,又可以经整流后给蓄电池补充充电,在混合系统中,还可以两种可再生能源发电技术构成混合系统。

最常见的是风光互补系统。

      4  毕业设计专用纸  的研究内容  本论文研究的目的是开发出一个高性能、价格低廉的修正正弦波输出的独立型光伏逆变系统。

针对独立光伏系统进行较为深入的分析,对于系统的工作原理、结构、控制方法、参数选择等方面进行论证,主要有以下几方面内容:

  

(1)在介绍太阳能电池板的分类特点,蓄电池的特性的基础上对太阳能电池板和蓄电池进行选型和设计,并对蓄电池的充放电的控制进行研究。

  

(2)对独立型光伏系统的不同主电路结构拓扑结构,工作原理,控制策略进行详细的分析,并根据设计要求选择合适的拓扑结构。

  (3)对系统进行可靠性设计,提出对系统的保护方法和系统设计可靠的辅助电路。

  (4)根据系统设计目标,用高频技术研制了500W修正正弦波输出逆变电源,具体设计指标如下:

  输入电压:

12V输出电压:

220V输出频率:

50Hz输出功率:

500W效率:

?

80%  过载能力:

110%-120%    5

  

      毕业设计专用纸    2独立光伏发电系统的研究与设计  独立光伏发电系统的组成  独立太阳能光伏发电系统的典型结构框图如上图2-1所示,主要太阳能电池方阵、太阳能控制器、蓄电池组、逆变器四部分构成。

    图2-1独立光伏发电系统的组成  太阳能电池  太阳能电池是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。

太阳能电池是利用光电转换原理使太阳的辐射光能通过半导体物质转变为电能的一种器件,这种光电转换过程是通过“光生伏特效应\实现的,因此又被称为“光伏电池”,其作用是将太阳能转化为电能,或送往蓄电池中存储起来,或推动负载工作。

  蓄电池组  蓄电池是独立光伏发电系统中必须的储能部件。

在设计选择光伏系统蓄电池时需要考虑的指标因素很多,如容量、电压、放电深度、循环寿命、充放电性能、自放电率、运行温度及维护要求等等。

光伏系统对蓄电池组的要求是:

  自放电率低;使用寿命长;深放电能力强;  6  毕业设计专用纸  充电效率高;少维护或免维护;工作温度范围宽;价格低廉。

  综合考虑以上各因素,本系统采用市场上普遍使用的VRLA蓄电池。

  逆变器  光伏电池阵列所发出电能为直流电,而大多数用电设备需交流供电,所以系统必须将直流电转换为用户所需要的交流电。

逆变器是一种半导体器件组成的电力调整装置,主要用于把直流电力转换成交流电力。

一般升压电路和逆变桥式电路构成。

升压电路把太阳电池的直流电压升压到逆变器输出控制所需的直流电压;逆变桥式电路则把升压后的直流电压等价地转换成常用频率的交流电压。

  对逆变器的基本要求是:

  能输出一个电压稳定、频率稳定的交流电,无论是输入电压发生波动还是负载发生变换,都要能达到一定的电压精度;  具有一定的过载能力,一般能过载120%-150%;输出电压波形含的谐波成分应尽量少;  控制器  控制器是光伏发电系统的核心部件之一,主要用于实现整套系统地充、放电管理控制。

  对于蓄电池部分,太阳能光伏阵列发出的直流电能,经过控制器对蓄电池进行充放电控制,如MPPT控制;但于设计的的光伏逆变系统低电压输入,太阳能电池板满足输出电流小,蓄电池组处于充放电的循环状态,综合考虑成本,经济效益等方面,因此不考虑对蓄电池的控制,只进行基本的稳压措施即可。

    独立光伏发电系统对逆变电源设计的要求  逆变电源部分将太阳能电池或蓄电池的直流电转化为交流电供用户使用,是光伏系统的关键部件。

光伏发电系统对逆变电源有较高的要求:

  具有较高的效率。

于目前太阳电池的价格偏高,为了最大限度地利  7  毕业设计专用纸  用太阳电池,提高系统效率,必须设法提高逆变电源的效率。

  具有较高的可靠性。

目前光伏发电系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变电源具有合理的电路结构,严格的元器件筛选,并要求逆变电源具备各种保护功能,如输入直流极性接反保护,交流输出短路保护,过热,过载保护等。

  直流输入电压具有较宽的适应范围。

于太阳电池的端电压随负载和日照强度而变化,蓄电池虽然对太阳电池的电压具有钳位作用,但于蓄电池的电压随蓄电池剩余容量和内阻的变化而波动,特别是当蓄电池老化时其端电压的变化范围很大,如12V蓄电池,其端电压可在10V~16V之间变化,这就要求逆变电源必须在较大的直流输入电压范围内保证正常工作,并保证交流输出电压的稳定。

  在中、大容量的光伏发电系统中,逆变电源的输出应为失真度较小的正弦波。

这是于在中、大容量系统中,若采用方波供电,则输出将含有较多的谐波分量,高次谐波将产生附加损耗,许多光伏发电系统的负载为通信或仪表设备,这些设备对电网品质有较高的外,当中、大容量的光伏发电系统并网运行时,为避免对公共电网的电力污染,也要求逆变电源输出正弦波电流。

    主电路拓扑结构的设计  升压环节拓扑结构比较  升压环节实际上是DC-DC开关电源,DC-DC变换器的拓扑结构有很多,但本设计的是作为逆变电源的直流升压环节,需要有电气隔离。

故此,只介绍以下几种结构:

  

(1)正激式如图2-2所示,电路拓扑简单,在变压器绕组中加一去磁绕组就可以实现去磁,是中小功率变换器常用的设计方案。

但是,这种拓扑存在许多不足之处。

首先变压器铁芯单向磁化,利用率低,主功率管承受两倍的输入电压,只能适合低压输入电路。

其次,主功率管一般占空比小于。

另外,于添加了去磁绕组使变压器的结构复杂化,变压器工艺水平的高低将直接影响到电路的性能。

  8  毕业设计专用纸    图2-2正激式变压器电路结构  

(2)推挽式如图2-3所示,电路结构简单,可以看成两个完全对称的单端反激式交换器的组合。

因此变压器铁芯是双向磁化的,相同铁芯尺寸下,推挽电路比正激式电路输出更大的功率。

但电路必须有良好的对称,否则铁芯容易引起电流偏磁饱和。

另外,于变压器原边漏感的存在,使主功率管必须承受超过两倍电源电压,因此功率管电压尖峰很大,承受较大电压应力。

适合低压大电流场合。

    图2-3推挽式变压器电路结构  (3)半桥式如图2-4所示,变压器铁芯不存在直流偏磁现象,变压器两象限工作,利用率高,功率管只承受电源电压,适合高压中功率场合。

    图2-4半桥式变压器电路结构  9  毕业设计专用纸  (4)全桥式如图2-5所示,功率管只承受电源电压。

并且铁芯利用率高,易采用软开关的工作方式,但功率器件较多,控制及驱动较复杂,并且存在直通现象,适合大功率场合。

    图2-5全桥式变压器电路结构  (5)反激式如图2-6所示,它的电路形式与正激式变换器相似,主功率管的承受的电压也相同,只是变压器的接法不同。

从输出端看,反激式是电流源,不能开路。

    图2-6反激式变压器电路结构  此外,目前市场流行的升压方式为BUCK-BOOST,但本系统输入端电压12V,属于低压,若想得到工频220V输出电压,必须含有变压器升压环节,综合考虑上述各拓扑结构的优劣,选择推挽变换方式。

推挽电路结构简单,适用于低压大电流的场合,正好满足独立光伏系统的设计要求。

  逆变电源的基本工作原理  逆变电源的拓扑结构有很多,根据结构不同,可分为单相半桥、单相全桥、三相桥式逆变器;但是,其基本原理相同,都是把直流电变为交流电输出,因此对结构简单的电压型单相全桥逆变电路为例进行介绍,电路如图2-7所示。

  10

  

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1