生物脱氮除磷原理及工艺.docx

上传人:b****5 文档编号:4364804 上传时间:2022-11-30 格式:DOCX 页数:6 大小:120.57KB
下载 相关 举报
生物脱氮除磷原理及工艺.docx_第1页
第1页 / 共6页
生物脱氮除磷原理及工艺.docx_第2页
第2页 / 共6页
生物脱氮除磷原理及工艺.docx_第3页
第3页 / 共6页
生物脱氮除磷原理及工艺.docx_第4页
第4页 / 共6页
生物脱氮除磷原理及工艺.docx_第5页
第5页 / 共6页
点击查看更多>>
下载资源
资源描述

生物脱氮除磷原理及工艺.docx

《生物脱氮除磷原理及工艺.docx》由会员分享,可在线阅读,更多相关《生物脱氮除磷原理及工艺.docx(6页珍藏版)》请在冰豆网上搜索。

生物脱氮除磷原理及工艺.docx

生物脱氮除磷原理及工艺

生物脱氮除磷原理及工艺

LT

用将氮转化为细胞原生质成分。

主要过程如下:

氨化作用是有机氮在氨化菌的作用下转化为氨氮。

硝化作用是在硝化菌的作用下进一步转化为硝酸盐氮。

其中亚硝酸菌和硝酸菌为好氧自养菌,以无机碳化合物为碳源,从

的氧化反应中获取能量。

其中硝化的最佳温度在纯培养中为25-35℃,在土壤中为30-40℃,最佳pH值偏碱性。

反硝化作用是反硝化菌(大多数是异养型兼性厌氧菌,DO<0.5mg/L)在缺氧的条件下,以硝酸盐氮为电子受体,以有机物为电子供体进行厌氧呼吸,将硝酸盐氮还原为

同时降解有机物[2]。

2.2生物除磷原理

磷在自然界以2种状态存在:

可溶态或颗粒态。

所谓的除磷就是把水中溶解性磷转化为颗粒性磷,达到磷水分离。

废水在生物处理中,在厌氧条件下,聚磷菌的生长受到抑制,为了自身的生长便释放出其细胞中的聚磷酸盐,同时产生利用废水中简单的溶解性有机基质所需的能量,称该过程为磷的释放。

进入好氧环境后,活力得到充分恢复,在充分利用基质的同时,从废水中摄取大量溶解态的正磷酸盐,从而完成聚磷的过程。

将这些摄取大量磷的微生物从废水中去除,即可达到除磷的目的[3]。

2.2.1厌氧释放磷的过程

聚磷菌在厌氧条件下,分解体内的多聚磷酸盐产生ATP,利用ATP以主动运输方式吸收产酸菌提供的三类基质进入细胞内合成PHB。

与此同时释放出

于环境中[1]。

2.2.2好氧吸磷过程

聚磷菌在好氧条件下,分解机体内的PHB和外源基质,产生质子驱动力将体外的

输送到体内合成ATP和核酸,将过剩的

聚合成细胞贮存物:

多聚磷酸盐(异染颗粒)。

3生物脱氮除磷工艺

从生物脱氮除磷的机理分析来看,生物脱氮除磷工艺基本上包括厌氧、缺氧、好氧3种状态,这3个不同的工作状态可以在空间上进行分离,也可以在时间上进行分离。

近年来,随着对生物脱氮除磷的机理研究不断深入,以及各种新材料、新技术、新设备的不断运用,衍生出了许多新的生物脱氮除磷工艺,其中典型的几种处理工艺如下。

3.1SBR工艺

SBR工艺是一种新近发展起来的新型处理废水的工艺,即为序批式好氧生物处理工艺,其去除有机物的机理在于充氧时与普通活性污泥法相同,不同点是其在运行时,进水、反应、沉淀、排水及空载5个工序,依次在一个反应池中周期性运行,所以该法不需要专门设置二沉池和污泥回流系统,系统自动运行及污泥培养、驯化均比较容易。

该法处理焦化废水有着独有的优势:

一是不要空间分割,时序上就能创造出缺氧和好氧的环境,即具有A/O的功能,十分有利于氨氮和COD的去除。

二是该法的沉淀是一种静止的沉淀,对污泥沉淀性能不好的废水,固液分离效果非常明显。

三是该法可以省去二沉池,其占地面积相对要小一些。

自动控制系统的发展和完善,为SBR工艺的应用提供的物质基础。

但因为SBR是间歇运行的,为了解决连续进水问题,至少需要设置两套SBR设施,进行切换运行。

SBR工艺流程图见图1[4]。

3.2CAST工艺

CAST实际上是一种循环SBR活性污泥法,应器中活性污泥不断重复曝气和非曝气过程,生物反应和泥水分离在同一池内完成,与SBR同样使用滗水器。

污水首先进入选择器,污水中溶解性的有机物通过生物作用得到去除,回流污泥中硝酸盐也此时得到反硝化;然后进入厌氧区,此时为微生物释磷提供条件;第三区为主曝气区,主要进行BOD降解,同时硝化反硝化。

CAST选择器设置在池首,防止了污泥膨胀。

3.3MSBR工艺

连续流序批式活性污泥法工艺(ModifiedSequencingBatchReactor,简称MSBR)。

首先,污水进入厌氧池,回流活性污泥中的聚磷菌在此充分释磷,然后混合液进入缺氧池反硝化。

反硝化后的污水进入好氧池,有机物在好氧条件下被降解,活性污泥充分吸磷后再进入起沉淀作用的SBR,澄清后上清液排放。

此时另一边的SBR在1.5Q回流量的条件下进行反硝化、硝化或静置预沉。

回流污泥首先进入浓缩池浓缩,上清液直接进入好氧池,而浓缩污泥进入缺氧池。

这样,一方面可以进行反硝化,另一方面可先消耗掉回流浓缩污泥中的溶解氧和硝酸盐,为随后进行的厌氧释磷提供更为有利的条件。

CAST综合了以往除磷脱氮工艺的优点,保证了各污染物质降解的最大速率环境,去除有机污染物效率更高,脱氮除磷效果更好

3.4

工艺

3.4.1传统

工艺

工艺或称AAO工艺,在一个处理系统中同时具有厌氧区、缺氧区、好氧区,能够同时作到脱氮、除磷和有机物的降解,其工艺流程见图2。

污水进入厌氧反应区,同时进入的还有从二沉池回流的活性污泥,聚磷菌在厌氧条件下释磷,同时转化易降解COD、VFA为PHB,部分含氮有机物进行氨化。

污水经过第一个厌氧反应器以后进入缺氧反应器,本反应器的首要功能是进行脱氮。

硝态氮通过混合液内循环由好氧反应器传输过来,通常内回流量为2~4倍原污水流量,部分有机物在反硝化菌的作用下利用硝酸盐作为电子受体而得到降解去除。

混合液从缺氧反应区进入好氧反应区,混合液中的COD浓度已基本接近排放标准,在好氧反应区除进一不降解有机物外,主要进行氨氮的硝化和磷的吸收,混合液中硝态氮回流至缺氧反应区,污泥中过量吸收的磷通过剩余污泥排除。

该工艺流程简洁,污泥在厌氧、缺氧、好氧环境中交替运行,丝状菌不能大量繁殖,污泥沉降性能好[5]。

它将厌氧段、缺氧段放在工艺的第一级,充分发挥了厌氧菌群承受高浓度、高有机负荷能力的优势,处理效果较好,产生的污泥较一般的生物法少。

可用于处理工业废水比重较大城市污水,另外,由于它是在普通活性污泥法的基础上发展起来的,因而也较容易用于生物法处理的老污水厂的改造。

3.4.2改良

工艺

改良

工艺是中国市政工程华北设计研究院提出的,工艺综合了A/O工艺和改良UCT工艺的优点,即在厌氧池之前增设厌氧/缺氧池。

首先回流污泥和10%的污水进入厌氧/缺氧池进行反硝化以去除回流污泥中的硝酸盐。

90%的污水进入厌氧区与回流污泥混合,在兼性厌氧发酵菌的作用下将部分易生物降解的大分子有机物转化为VFA;聚磷菌释磷,同时吸收VFA以PHB的形式贮存于胞内。

在缺氧区,反硝化菌利用污水中的有机物和经混合液回流而带来的硝酸盐进行反硝化,同时去碳脱氮;在好氧区,有机物浓度相当低,有利于自养硝化菌生长繁殖,进行硝化反应,同时聚磷菌过量摄磷。

通过沉淀、排除剩余污泥达到除磷的目的。

该工艺降低回流污泥中硝态氮对后续厌氧池的不利影响,有利于厌氧池的聚磷菌释磷,改善了泥水分离性能[6]。

3.5UCT改良工艺

改良的UCT工艺(UniversityofCapeTown)脱氮除磷工艺由厌氧池、缺氧1池、缺氧2池、好氧池、沉淀池系统组成,有2个缺氧池。

缺氧1池只接受沉淀池的回流污泥,同时缺氧1池有混合液回流至厌氧池,以补充厌氧池中污泥的流失。

回流污泥携带的硝态氮在缺氧1池中经反硝化被完全去除。

在缺氧2池中接受来自好氧池的混合液回流,同时进行反硝化,缺氧1池出水中的

带进厌氧池使之保持较为严格的厌氧环境,从而提高系统的除磷效率[7]。

3.6立体循环一体化氧化沟

氧化沟是一种经济而有效的污水处理技术,具有稳定的处理效果,是污水生物处理技术之一。

特别是用于污水脱氮,氧化沟比其它生物脱氮工艺费用低、TN去除效率高。

然而,与活性污泥法相比,氧化沟占地面积较大,在土地紧张的城市或地区,氧化沟的应用受到限制[8]。

针对常规氧化沟存在的问题,成功地研究出立体循环一体化氧化沟。

其特点是:

①氧化沟采用立体循环,在循环过程中完成降解有机物和脱氮过程。

与现有氧化沟相比,占地面积可减少约50%。

②沉淀区与氧化沟合建,沉淀的污泥可自动回流到氧化沟内,可节省投资和能耗。

③结构紧凑,运行操作简便。

新型立体循环一体化氧化沟既保留氧化沟设备和运行操作简单等优点,又可减少占地面积。

4结语

污水生物脱氮除磷是当今水处理的热点与难点。

新的脱氮除磷理论的提出,为生物脱氮除磷工艺指引了方向。

如:

SND(同时硝化反硝化工艺)、SHARON工艺、氧限制自氧硝化—反硝化)工艺、厌氧氨氧化工艺以及短程硝化—厌氧氨氧化组合工艺等。

但是,生物脱氮除磷工艺的发展已不仅仅要求对N,P去除率,而且要求处理效果稳定,可靠的运行工艺。

今后对此技术的研究应集中在以下方面:

第一、加深除磷机理的研究。

反硝化聚磷菌的出现解决了硝化菌与聚磷菌争夺碳源,污泥龄不同等主要矛盾。

为新型同步脱氮除磷工艺提供了理论依据。

但是对于反硝化聚磷菌的了解还不够全面,尤其是其除磷机理还待于进一步研究。

应突破传统理论,从微生物的角度来调控工艺。

第二、随着脱氮除磷工艺的进一步发展,许多研究者在进行小试时,都驯化出颗粒污泥,而颗粒污泥的出现改善了污泥膨胀这一难题。

同时发现颗粒污泥对N,P的去除要远远优于絮状污泥。

今后在对颗粒污泥的研究上应更加深入,研究了解颗粒污泥外部的胞外聚合物是否对N,P有吸附作用,并进一步研究颗粒污泥的形成机理,调整现有反应器的运行参数,从而加速颗粒污泥的形成,提高脱氮除磷效率。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 高中教育

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1