小波与信号处理.docx

上传人:b****5 文档编号:4362649 上传时间:2022-11-30 格式:DOCX 页数:17 大小:513.12KB
下载 相关 举报
小波与信号处理.docx_第1页
第1页 / 共17页
小波与信号处理.docx_第2页
第2页 / 共17页
小波与信号处理.docx_第3页
第3页 / 共17页
小波与信号处理.docx_第4页
第4页 / 共17页
小波与信号处理.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

小波与信号处理.docx

《小波与信号处理.docx》由会员分享,可在线阅读,更多相关《小波与信号处理.docx(17页珍藏版)》请在冰豆网上搜索。

小波与信号处理.docx

小波与信号处理

第七章小波与信号处理

WAVELET&SIGNALPROCESSINGWITHAPPLICATIONS

小波是应用数学的一个新领域

80年代法国地质石油工程师J.Morlet提出Wavelet的概念,通过物理直观概念和信号处理的实际需要建立了经验的反演公式。

但当时的数学家并未认可-1807年Fourier热力学工程师-FourierKingdom

1986年数学家Mayer偶然构造出一个真正的小波基函数,并与Mallat合作建立了构造小波基函数的统一方法-多尺度分析方法及Mallat金字塔算法,小波才得到真正的发展。

Daubechies-比利时女数学家-小波十讲-Daubechies小波

近代科学400年来-从复杂事物中寻找简单规律-几乎忘记了非线性用局部线性化来取代非线性,用片面的美掩盖了整体的美。

一叶障目不见泰山。

自然世界的本性,丰富多彩、神奇多样化都来源于非线性-分形、Fractals-Choas。

1963年气象学家洛伦兹用计算机仿真大气模型,仅忽略了一些看起来微不足道的参数,但结果却大相径庭。

-科学别忘记了非线性

小波经过近十年的研究,数学体系已经建立,理论基础扎实,应用广泛。

小波分析,时间频率局部变换,多尺度分析,解决了传统的傅立叶变换难以解决的许多难题-数学显微镜,信号分析,数据压缩、模式识别、特征提取。

AGeneralCommentonInformationRepresentation——APrelude

informationF(u)

Today'scomputingdevicesarelargelylimitedtoprocessf(u)typeofinformation.

Wherefrepresentstheinformation,anduisageneralindexatwhichtheinformationisdescribed.

examplesifindexu:

timet(speech,music,etc.)

positionx(stillimage,etc.)

(time,position)(t,x)(video,etc.)

otherphysicalparameters...

indexu:

continuousversusdiscrete

indexuversusinformationf:

whichoneismoreimportant

Acharacterofusefulinformation:

redundancy.

 

TheNoteswerepreparedbasedonthefollowingreferences:

1.J.S.walker,"Fourieranalysisandwaveletanalysis."NoticesofAMS,vol.44,NO.6,pp.558-670,June/July1997.

2.C.Mulcahy,"plottingandschemingwithwavelets."Math.Magazine,b9,Dec.1996.

3.G.strangandT.Nguyen,WaveletsandFilterBanks,Wellesley-CambridgePress,1996.

4.W.-S.Lu,ELEC639ACourseNotesonWavelets,DeptofElec.&Comp.Engn.,Univ.ofVictoria,Jan1997.

 

§7-1.什么是小波WhatAreWavelets?

Awaveletisafunction(t)whoseaverageisZero,i.e.,

Examples:

 

WaveletsthatareusefulinDSPandotherapplicationsoftenpossessadditionalfeatures:

Generate(viadilationandtranslation)orthonormalorbiorthonormal(basis)systemsinL2

Localbothintimeandfrequencydomain

FastDecomposition/ReconstructionAlgorithms

Vanishingmoments

§7-2.SignalRepresentation:

FourierSystems

7.2.1SystemFeatures

AnOrthonormalSyteminL2(R)generatedwithone(Mother)function:

ejt

OffersFrequencyAnalysisofSignalsandDSPsystem

FastAlgorithms(FFT,DFT,DCT,2D-DFT,……)

InfiniteResolutioninFrequencydomain

ZeroResolutioninTimedomain

不能表示突变信号,局部时间变化的信号

7.2.2Application:

SignalApproximation(LossyCommpression)

Considerdiscretesignal

where

TheDFTof{fk}isgivenby

Anapproximationof{fk}istheinverseDFTof

"CompressionRate"=M/N

ThefigurebelowshowsaplotoftheoriginalsignalF(t),andthreeapproximatesofF(t)withN=512,256,and128.NoticetheGibbsoscillationsforN=256and128.

7.2.3Application:

SignalDenoising

Considera"Modulated"Signal

representingthebitsequence1011011

Supposethesignalistransmittedthroughachannelthataddsacertainamountofnoisewhosefrequencyrangeisboundedby200HZ.Thenoise-contaminatedsignalcanthenberecoveredusingabandpassfilteringtechnique:

STFT短时傅氏变换(Gabor变换)

☆在频域和时域均有局部化功能;

☆但是、其时频窗口的大小是固定的,窗口没有自适应性,只适合分析所有特征尺度大致相同的的各种过程。

☆此外、其离散形式没有正交展开形式,难以实现高效算法。

短时傅氏变换,只是向时频分析走出了重要的一步。

Guass窗

参考书“子波变换与子波分析”赵松年

窗口函数

易见、当两个频率分量之差为2时,STFT可以分辨出来

而当两个频率分量之差为1时,STFT就不能分辨了。

§7-3SignalRepresentation:

TheHaarWavelet

7.3.1HaarScalingFunctionandHaarwavelet

TheHaarscalingfunctionisdefinedby

尺度函数

property:

TheHaarwaveletisdefinedby

property:

小波函数

7.3.2HaarScalingFunctionSeenFromSignalApproximation

Consideracontinuous-timesignalf(t)anditsapprox.

where(t)theHaarScalingfunction

Weseef0(t)asafinite-resolutionrepresentationoff(t)inthespaceV0spannedby{(t-k),kZ}

Note:

V0=thesetofallfunctionsthatarepiecewiseconstanton[k,k+1),kZ

and

Twoproblems:

(a)Whatiff0(t)asanapproximatelyisnotaccurateenough?

(b)Whatiff0(t)istooaccurate?

WecanmovefromV0uptospaceswithhigherresolutioninthecaseof(a).

Orinthecaseof(b)wemovetospaceswithlowerresolution.

Case(a)Anaturalwaytoobtainmoreaccuraterepresentationoff(t)istoincreasethenumberofsamples.Forexample,ifthesamplingrateisdoubled,thenweobtain

Where

HereweseeaspaceV1:

isorthonormal

Case(b)Wecanforinstanceusehalfofthesamplingratetorepresentthesignaliff0(t)is“tooaccurate”:

Where

NotethespaceV-1

Acomparisionof:

§7-3Haarwaveletseenfromsignalreconstruction

LetusconsiderfasignaloffinitelengthNinspaceV1:

Weapproximatef(t)withasignal

;lengthof

Astheaveragingisakindoflowpassfiltering,detailsoffarelostin

.Thelostinformationcanbedescribedas

Note:

lengthof

Thissuggestsasignaldecompositionscheme:

Lowpassfilteringplusdownsamplingby2

AndHighpassfilteringplusdownsamplingby2

Featuresofthedecomposition:

{informationamountoff}={infoamountofa0}+{infoamountofd0}

fcanbeperfectlyrecoveredbyd0anda0

d0isusuallySMALL

Usethisdecompositionasabuildingblock,weobtaina(asymmetric)treestructureforsignalanalysisandCOMMPRESSION:

Foradiscretesignalatlength2k,klevelsatdecompositionmaybeusedtoobtaind0,d-1,...d-k+1,a-k+1,suchthat

Theirtotallength=thelengthoff;

Manyofd0areSMALL

{d0,d-1,...d-k+1,a-k+1}canbeusedtoREconstructf.

SignalCompression/FunctionApproximation

★Mathematiciansseetheuseofthedecomposition/reconstructioninfunctionapproximationwithfewerterms:

★Engineersseetheuseofthedecomposition/reconstructioninsigalcoding(compression)

Theoriginalsignalis

andoneleveldecomposition

usingtheHaarwavelet;5-leveldecompositionusingtheHarrwavelet.

Noticethesmallernumberofwaveletcoefficientsinthe5-leveldecomposition.

Wenoelookattheabovedecompositionanalytically:

where

Thefigurebelowshowswhathappensintheinterval[n,n+2):

7.3.4Connectionofscalingfunctionsatdifferentresolutionlelvels

Basicequationfor

:

Use(DE)onecaneasilyconnect

to

7.3.5ConnectionatWavelettoScalingFunction

Bydefinitionwecanverify

ThisistheWAVELETEQUATIONfortheHaarwavelet.

Together,theDEandWEareofcriticalimportanceforthedevelopmentofapowerfulMULTIRESOLUTIONANALYSIS(MRA)ofsignals,andforgeneratingmanyimprovedwaveletsthatareofmoreuseinDSPandotherapplications.

73.6DEandWE:

AFilter-BankInterpretation

Thenormalizedscalingfunctions(inV0andV1)are

andthenormalizedwaveletinW0is

TheDE&WEintermsof

are

Thecoefficients{1/2,1/2}inDEinterpretedastheimpulseresponseoftelowpass(average)filter

Thecoefficients{1/2,1/2}inWEcanbeviewedastheimpulsereponseofthehighpass(difference)filter

ThefigurebelowshowstheamplituderesponsesofF0(z)(lowpass)andF1(z)(highpass).

NoticethatF0(ej)=0at=(0.5innormalizedfrequentcy).Thisisimportantaswecanshowthat

#ofzerosofF0(z)at=isequalto

#ofvanishingmomentsoftheassociatedwavelet.

相当于低通滤波器的零点。

Haar小波仅此一个零点,故不是很有用;

零点越多越有用,如信号压缩的倍数越高。

Daubechies在她的论文中给出了,在给定零点条件下,阶数最少的滤波器。

Haar小波的实际应用意义并不大;

但是,这里作为例子,用来帮助理解小波的原理是很有益的。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 畜牧兽医

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1