最新卡拉OK仿真系统音频功率放大的设计.docx

上传人:b****6 文档编号:4338971 上传时间:2022-11-29 格式:DOCX 页数:30 大小:1.05MB
下载 相关 举报
最新卡拉OK仿真系统音频功率放大的设计.docx_第1页
第1页 / 共30页
最新卡拉OK仿真系统音频功率放大的设计.docx_第2页
第2页 / 共30页
最新卡拉OK仿真系统音频功率放大的设计.docx_第3页
第3页 / 共30页
最新卡拉OK仿真系统音频功率放大的设计.docx_第4页
第4页 / 共30页
最新卡拉OK仿真系统音频功率放大的设计.docx_第5页
第5页 / 共30页
点击查看更多>>
下载资源
资源描述

最新卡拉OK仿真系统音频功率放大的设计.docx

《最新卡拉OK仿真系统音频功率放大的设计.docx》由会员分享,可在线阅读,更多相关《最新卡拉OK仿真系统音频功率放大的设计.docx(30页珍藏版)》请在冰豆网上搜索。

最新卡拉OK仿真系统音频功率放大的设计.docx

最新卡拉OK仿真系统音频功率放大的设计

 

卡拉OK仿真系统音频功率放大的设计

广东交通职业技术学院

毕业论文(设计)

 

题目:

卡拉OK仿真系统

 

系别:

电子系

专业:

电子信息工程技术

姓名:

林汉坤

学号:

1113232138

指导教师:

邬志峰

日期:

2013年12月

卡拉OK仿真系统

摘要

这是一个科学技术极度发展的的时代,这是一个人们生活节奏极度快速的时代。

在这个极速的时代人们对音乐的播放和演绎都有了更高的要求,一、希望声音的放大倍数尽可能的大;二、希望播放音乐的失真度尽可能的小;三、要求声源的输入越来越多。

例如:

一台普通的功放机至少会有5到7个音频的输入接口;四、随着社会发展的要求,节能环保的提倡,人们对机体本身的功耗要求越来越高,希望功耗尽可能的小;五、为了节省材料,体积越小越好,耗材越少越好。

由于条件的限制我们设计一个两路音频的功放,一个供MP3的音频输入,还有一个用来供话筒的声音输入。

这样就可以做成一个小型的卡拉OK机了。

关键词:

音频功率放大器;Proteus

卡拉OK仿真系统1

一、引言3

二、音频放大器的概述4

2.1音频放大电路的回顾4

2.2音频功率放大器的介绍5

2.2.1A类(甲类)功率放大器5

2.2.2B类(乙类)功率放大器5

2.2.3AB类(甲乙类)功率放大器6

2.2.4C类(丙类)功率放大器6

2.2.5D类(丁类)功率放大器6

2.3放大器的技术指标6

三、音频功率放大器的设计10

3.1设计方案分析10

3.2前置放大电路设计10

3.3二级放大电路设计12

3.3.1低通滤波器设计12

3.3.2高通滤波器设计14

3.3.3二级放大电路电路设计16

3.4功率放大器设计16

3.5直流稳压电源设计17

四、Proteus的仿真操作简介19

4.1Proteus的工作界面19

4.2Proteus的仿真工具20

五、电路的仿真22

5.1前置电路的仿真22

5.1.1输入与输出分析22

5.1.2电路频率响应特性分析23

5.2二级放大电路仿真23

5.2.1电路输入与输出分析24

5.2.2电路频率响应特性分析25

5.3功率放大电路功率仿真26

5.4直流稳压电源仿真28

5.5音频功率放大电路仿真和分析28

5.5.1电路输入与输出分析29

5.5.2电路频率响应特性分析29

参考文献31

原理图32

附图30

 

一、引言

进入大学后生活条件和周围的环境都发生了极大的变化,以前在家你可以开着音响大声的放歌,打开麦克风大声唱自己喜欢的歌谣。

只要自己愿意就可以了,一般不会受限制的。

真的是想唱就唱,想听你就大声的听,让音乐不断的陶醉吧!

上学后呢?

我们依然想听着被大声播放的音乐,想对着MV唱自己喜欢唱歌曲。

但是条件实在是不允许,我们没有一个播放设备给我们大声放歌,我们也没有一个可以支持话筒输入的设备来供我们唱歌。

现在我们都会有一种感觉,没有音乐的社会就像在地狱一样,音乐已经是生活的一部分。

我们又不可能去买那些很奢侈的东西吧——很贵,没有买的必要。

当然我们是学生学习也很重要,听音乐和唱歌只是一个业余爱好而已。

怎样才能两全其美呢?

那就用自己所学的东西来设计一个卡拉OK机吧!

这样既可以学以致用,又能满足我们自己的喜好。

二、音频放大器的概述

2.1音频放大电路的回顾

音响技术的发展历史可以分为电子管、晶体管、集成电路、场效应管四个阶段。

1906年美国的德福雷斯特发明了真空三极管,开创了人类电声技术的先河。

1927年贝尔实验室发明了负反馈NFB(Negativefeedback)技术后,使音响技术的发展进入了一个崭新的时代,比较有代表性的如“威廉逊”放大器,而1947年威廉逊先生在一篇设计hi-fi(HighFidelity)放大器的文章中介绍了一种成功运用负反馈技术,成为了hi-fi史上一个重要的里程碑。

60年代由于晶体管的出现,使功率放大器步入了一个更为广阔的天地。

晶体管放大器细腻动人的音色、较低的失真、较宽的频响及动态范围等特点,各种电路也相应产生,如:

“OTL(OutputTransformerLess)”无输出放大器、“OCL(OutputCapacitorLess)”放大器等。

随着晶体管制造技术的不断提高和新技术的应用,各项实用性指标和可靠性指标都有很大改善,并不断在向更大的输出功率,更小的体积,更轻的重量,更多的功能和智能化方向发展,如美国CROWN公司的MA-5000VZA功放,其最大输出功率可达4000W/8Ω,完善的可靠性设计使它在苛刻的环境中可连续工作,使得生产者可作3年免维护的保证;插入可编程的输入处理模块USP3;可对1~2000台功放的工作状态进行程控调节和各种参数检测。

各种完善的可靠性保护措施,使它的可靠性大大提高。

1983年,M.B.Sandler等学者提出了D类放大的PCM(脉码调制)数字功放的基本结构。

美国Tripass司设计了改进的D类数字功放,取名为“T”类功。

1999年意大利POWERSOFT公司推出了数字功放的商业产品,从此,第4代音频功率放大器,数字功放进入了工程应用,并获得了世界同行的认可,市场日益扩大,最终将替代各类模拟功放。

2.2音频功率放大器的介绍

按照电流导通角的大小可分为A类(甲类)、AB类(甲乙类)、B类(乙类)、C类(丙类)和D类(丁类)功率放大器。

2.2.1A类(甲类)功率放大器

A类(甲类)功率放大器电流导通角θ=180°,理想效率为50%,一般适用于小信号电压放大器。

A类功率放大器的主要特点是:

放大器的工作点Q设定在负载线的中点附近,晶体管在输入信号的整个周期内均导通。

由于放大器工作在特性曲线的线性范围内,所以瞬态失真和交替失真较小。

电路简单,调试方便。

有较大的非线性失真,由于效率比较低现在设计基本上不在再使用。

2.2.2B类(乙类)功率放大器

B类(乙类)功率放大器电流导通角θ=90°,理想效率为78.5%。

B类功率放大器的主要特点是:

放大器的静态点在(VCC,0)处,当没有信号输入时,输出端几乎不消耗功率。

在Vi的正半周期内,一管导通另一管截止,输出端为正半周正弦波;同理,当Vi为负半周期内,输出端为负半波正弦波,所以必须用两管推挽工作。

其特点是效率较高(78.5%),但是因放大器有一段工作在非线性区域内,故其缺点是"交越失真"较大。

即当信号在-0.6V~0.6V之间时,两管都无法导通而引起的。

2.2.3AB类(甲乙类)功率放大器

AB类(甲乙类)功率放大器电流导通角90°<θ<180°,理想效率为50%<η<78.5%。

AB类(甲乙类)放大器,实际上是A类(甲类)和B类(乙类)的结合,每个器件的导通时间在50—100%之间,依赖于偏置电流的大小和输出电平。

该类放大器的偏置按B类(乙类)设计,然后增加偏置电流,使放大器进入AB类(甲乙类)。

AB类功率放大器的好处是:

可以避免交越失真。

有效率较高,晶体管功耗较小的特点。

2.2.4C类(丙类)功率放大器

C类(丙类)功率放大器电流导通角θ<90°,理想效率η>78.5%。

C类功率放大器的主要特点是:

处在C类状态时,放大器的电流波形有较大的失真,因此只能用调谐回路作为负载,以滤除谐波分量,选出信号基波,从而消除失真。

2.2.5D类(丁类)功率放大器

D类(丁类)功率放大器功率管处于开关状态,理想效率为90%~100%。

D类(数字音频功率)放大器是一种将输入模拟音频信号变换成脉冲信号,然后用脉冲信号去控制大功率开关器件通/断音频功率放大器,也称为开关放大器。

具有效率高的突出优点。

放大器由输入信号处理电路、开关信号形成电路、大功率开关电路和低通滤波器等四部分组成。

它有以下好处:

1.具有很高的效率,通常能够达到85%以上。

2.体积小,可以比模拟的放大电路节省很大的空间。

3.低失真,频率响应曲线好。

外围元器件少,便于设计调试。

2.3放大器的技术指标

评价一个功放系统或设备是否符合高保真要求,一般应采用主观听音评价和客观指标测试相结合的方式来进行,并以客观测试指标为主要依据。

因为采用仪器测试设备的性能指标.能得到很直观的可供参考比较的定量结果,无疑是最科学而值得信赖的。

音频功放的技术指标,主要包括输出功率、频率特性、信噪比、瞬态响应以及非线性失真等。

其中,输出功率、频率特性等,通常称为静态特性指标,它们是用稳态信号测量的。

而瞬态特性和非线性失真等,则称为动态特性指标,它们是用非稳态信号测量确定的。

1、额定功率

音响放大器输出失真度小于某一数值(r<1%)的最大功率称为额定功率,表达式;

Po=Uo2/RL(2-1)

U0为负载两端的最大不失真电压,RL为额定负载阻抗。

测量条件如下:

信号发生器输出频率为1kHz,电压U1=20mV正弦信号。

功率放大器的输出端接额定负载电阻RL(代替扬声器),输入端接U1,逐渐增大输入电压U1;直到U0的波形刚好不出现谐波失真(r<1%),此时对应的输出电压为最大输出电压。

测量后应迅速减小U1,以免损坏功率放大器。

2、频率响应

音频功放的频率特性,是反映它对不同信号频率放大能力的物理量。

通常采用输出电平随频率变化的关系曲线来描述。

指的是振幅频率特性,习惯上称为幅频特性或频率响应(简称为频响)。

在说明音频功放的频率特性时,有两点必须明确给出。

即:

一是有效频率范围。

频率范围,20Hz~20kHz全面反映出该功放的频率特性指标。

对于音频功放的频率特性指标而言,其有效频率范围越宽,且在该频率范围内相对参考电平的不均匀度越小。

则说明该音频功放的频率特性指标就越好。

放大器的电压增益相对于中音频fo(1kHz)的电压增益下降3dB时所对应的低音频率fL和高音频率fh称为放大器的频率响应。

3、谐波失真

谐波失真是指信号通过音频设备后,新增加的谐波成分。

它是原信号波形中没有的波形变化,是不希望发生的。

其值以新增加的谐波成分的均方根值与原信号电压的均方根值的百分比来表示

即:

(2-2)

式中U1—正弦波基波电压有效值;U2,Us.⋯Un—2次、3次、n次谐波电压有效值。

谐波失真是电路或器件工作时的非线性引起的。

高保真放大器的谐波失真一般应控制在0.05%以下,目前许多优秀的放大器失真度均可达到<0.01%。

降低放大器谐波失真度的措施有:

①施加适量的电压或电流负反馈。

②选用ft较高、线性好的放大器件。

③尽可能提高各级对管参数的一致性或对称性。

④采用甲类放大,选用优秀的电路,如双差分放大、全互补输出或全对称等。

4、信号噪声比

信号噪声比(S/N)指信号通过音频设备后增加的各种噪声(如低频呼声、感应交流声、嘀嘀声等)与指定信号电平的dB差值,或信号幅度与噪声幅度之比,其值常用分贝表示,有时也以重放设备输出的绝对噪声电压或电平值来表示,这时标为噪声电平。

现代高保真后级功放的S/N一般能达到90dB以上,问题不会很突出。

我们知道,多级放大器的S/N主要取决于第一级,故在系统中,我们要着重提高前级或前置放大器的S/N。

由于影响S/N的因素很多,提高S/N便显得很棘手,有时费了九牛二虎之力,能使之提高两三个dB已届战果辉煌。

而人耳对噪声又很敏感,所以提高S/N往往成为设计及制作的主攻目标。

虽然因素很多,但也不是无章可循,除了器件本身的噪声以外、放大器噪声的来源概括起来主要有三个途径:

电源干扰、空间干扰和地线干扰。

只要从以下几个方面人手,S/N一般便可达到令人满意的水平。

①适当降低信号源的输出内阻。

合理设定前级或前置放大器的增益,避免使之过大,能满足系统增益要求略有富余便可,这在业余制作时往往被忽略。

②使用高性能的稳压电源供电。

③各放大级尽可能单独或并联供电(即各级电源端经一只隔离电阻直接与电源连接,并加接退耦电容)。

④严格区分模拟地线与数字地线,各级地线分别定线,一点接地。

机壳的接地点应通过试验确定。

⑤合理布线、使输入信号引线尽可能短。

超过4cm长的均应使用屏蔽线,屏蔽层单端接地,各电位器、开关外壳也应可接地.小信号放大电路板应远离电源变压器。

三、音频功率放大器的设计

3.1设计方案分析

本次设计的音频功率放大器分为音频放大和直流电源两大部分。

可由以下所示框图实现

图3-1音频功率放大框图

音频放大电路的功能是将其他电子设备的音源信号进行放大,然后再经过功率放大,最后去推动扬声器输出,简单说就是一个扩音器

图3-2直流电源框图

直流电源部分则负责将220V交流电转换为低压直流电供放大电路使用,为了减小电源波动引起的噪声对放大电路的影响,电源部分将采用线性直流稳压电源。

3.2前置放大电路设计

声音源的种类有很多种,如传声器(话筒)、电唱机、及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。

一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号直接输入到功率放大器中的话,如输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这将失去音频放大的意义。

所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,使其与功率放大器的输入灵敏度相匹配。

前置放大电路的作用简单说来就是“缓冲”,将外部输入的音频信号进行放大并输出。

本次设计的前置放大电路是一个高输入阻抗、高共模低抑制比、低漂移的小信号放大电路,设计中将采用OP07来设计前置放大电路。

对于前置放大电路来说,输入阻抗越大越好,输出阻抗越小越好,所以本设计采用反相比例放大器,如图3-3

图3-3反相比例放大器

输出电压U0=-IfRf(3-1)

而If=I1=

=

(3-2)

最后得出Auf=

=

(3-3)

输入电阻为rif=R1(3-4)

输出电阻为r0=0(3-5)

平衡电阻为R2=R1∥Rf(3-6)

若设计一个放大倍数为10倍的前置放大电路,输入电阻R1将采用10k的电阻,希望达到的放大倍数为10倍。

则根据公式,负反馈Rf将采用100k的电阻。

因为R2=R1∥Rf,且R1<

OP07用±15稳压电源供电。

若在输入端加入一电容,则电容C是耦合电容,其容量取值可以按如下规则来考虑:

因为运放的反相端相当于“虚地”,故电容C和电阻R构成一阶高通滤波器,人耳能听到的声音信号最低为20HZ,故该高通滤波器的截止频率应当低于20HZ,才能保证音频信号的完整传输,即

(3-7)

R取10K,可以求得电容C的容量应当大于0.96μF。

但是在实际工程设计中,上述计算值只能做一个参考,一般耦合电容的取值都应该远大于计算值。

所以我电容值取4.7μF。

画出前置放大电路原理图如图3-4

图3-4前置放大器电路

3.3二级放大电路设计

二级放大电路的设计将由一个低通滤波器和一个高通滤波器组成,形成一个带通滤波器。

3.3.1低通滤波器设计

低通滤波器容许低频信号通过,但减弱(或减少)频率高于截止频率的信号的通过。

对于不同滤波器而言,每个频率的信号的减弱程度不同。

当使用在音频应用时,它有时被称为高频剪切滤波器,或高音消除滤波器。

典型的一阶有源低通滤波器如图3-5

图3-5(a)反相输入低通滤波器(b)同相输入低通滤波器

设计中采用集成运放低通滤波器的同相输入接法。

输出电压U0=

(3-8)

而U+=

=

(3-9)

所以传递函数A=

(3-10)

其中输出电压U0与其输入电压U+的比值为Au;

ω0为电压放大倍数下降到

时对应的角频率。

所以其特性为Au=

(3-11)

(3-12)

若设计一个放大倍数为3倍的低通滤波器,则设计中负反馈选择200Ω电阻,为了达到3倍的放大倍数,电阻R1和R选择100Ω电阻。

因为人可以听到的声音范围为20Hz~20kHz,则

(3-13)

rad/s(3-14)

由于R选择100Ω电阻,则C>0.08uF。

设计中电容采用0.082uF的电容。

设计出电路图如图3-6

图3-6低通滤波器

则图3-6中电压放大倍数为

(3-15)

rad/s(3-16)

3.3.2高通滤波器设计

高通滤波器是容许高频信号通过、但减弱(或减少)频率低于截止频率信号通过的滤波器。

对于不同滤波器而言,每个频率的信号的减弱程度不同。

它有时被称为低频剪切滤波器;在音频应用中也使用低音消除滤波器或者噪声滤波器。

高通滤波器与低通滤波器特性恰恰相反。

典型的一阶有源高通滤波器如图3-7

图3-7(a)反相输入高通滤波器(b)同相输入高通滤波器

设计中采用集成运放高通滤波器的同相输入接法

其中

传递函数

(3-17)

在理想特性下通带电压放大倍数

(3-18)

通带截止角频率

(3-19)

若设计一个放大倍数为3倍的高通滤波器,则设计中负反馈选择20kΩ电阻,为了达到3倍的放大倍数,电阻R1和R选择10kΩ电阻。

因为人可以听到的声音范围为20Hz~20kHz,则

(3-20)

rad/s(3-21)

由于R选择10kΩ电阻,则C<0.8uF。

设计中电容采用0.75uF的电容。

设计出电路图如图3-8

图3-8高通滤波器

则图中电压放大倍数为

(3-22)

≈133rad/s(3-23)

3.3.3二级放大电路电路设计

将低通滤波器和高通滤波器相连接,则形成如下二级电路:

图3-9二级放大电路电路图

则图3-9中实际通带电压放大倍数为

Au=Au低通Au高通=9(3-24)

(3-25)

可知该二级电路的通带频率约为21.2Hz~19.4KHz。

3.4功率放大器设计

功率放大器的作用是给音响放大器的负载提供所需要的输出功率。

功率放大器的主要性能指标有最大输出不失真功率、失真度、信噪比、频率响应和效率。

目前常见的电路结构有OTL型、OCL型。

有全部采用分立元件晶体管组成的功率放大器;也有采用集成运算放大器和大功率晶体管构成的功率放大器;随着集成电路的发展,全集成功率放大器应用越来越多。

由于集成功率放大器使用和调试方便、体积小、重量轻、成本低、温度稳定性好,功耗低,电源利用率高,失真小,具有过流保护、过热保护、过压保护及自启动、消噪等功能,所以使用非常广泛。

本次设计将采用正向比例运算放大器连接OCL互补对称电路,使输入信号功率放大。

正向比例运算放大器负反馈使用可调电阻,使放大功率可调。

喇叭使用8Ω的喇叭,互补对称电路用±15直流电源供电。

可估算OCL电路输出功率为

w(3-26)

图3-10集成运放OCL电路

其中D1、D2用于消除交越失真。

反相比例运算放大器放大倍数为1~5倍。

3.5直流稳压电源设计

由于本次设计全部采用±15V直流电源,则必须设计一个直流稳压电源,将220V的交流电源经过降压和稳压之后成为稳定的±15V直流电源。

直流稳压电源设计思路如以下框图

图3-11直流电源框图

因为本设计需要对称的双电源,因此必须选择次级有三端抽头的变压器,经全桥电路整流和电容滤波后,输出对称的正负电源。

要构成线性直流稳压电源,最简单的方法就是采用三端集成稳压器。

这种集成电路块内部完整地集成了采样电路、比较放大、调整电路、保护电路和启动电路等功能,但是外部引脚只有三个端口,分别接输入电源、地,另一个端口输出,其使用十分简单,只要将三个端口按规定接入电路就可以使用。

由于需要±15V直流电源,则集成三端稳压电源模采用7815和7915为负三端稳压,7815为正三端稳压。

直流稳压电源的设计图如下

图3-12直流稳压电源

图中可看出220V的交流电源经变压器(TR1)降压后,经过由D1、D2、D3和D4组成的全桥整流电路输出直流,再由稳压电路输出稳定的直流,提供给放大电路使用。

图中C1、C2、C3和C4都为滤波电容。

四、Proteus的仿真操作简介

设计中采用Proteus仿真软件对电路各部分进行仿真。

Proteus不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。

它是目前最好的仿真单片机及外围器件的工具。

ProteusISIS是英国Labcenter公司开发的电路分析与实物仿真软件。

它运行于Windows操作系统上,可以仿真、分析(SPICE)各种模拟器件和集成电路,该软件的特点是:

(1)实现了单片机仿真和SPICE电路仿真相结合。

具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统的仿真、RS232动态仿真、I2C调试器、SPI调试器、键盘和LCD系统仿真的功能;有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器等。

(2)支持主流单片机系统的仿真。

目前支持的单片机类型有:

68000系列、8051系列、AVR系列、PIC12系列、PIC16系列、PIC18系列、Z80系列、HC11系列以及各种外围芯片。

(3)提供软件调试功能。

在硬件仿真系统中具有全速、单步、设置断点等调试功能,同时可以观察各个变量、寄存器等的当前状态,因此在该软件仿真系统中,也必须具有这些功能;同时支持第三方的软件编译和调试环境。

(4)具有强大的原理图绘制功能。

总之,该软件是一款集单片机和SPICE分析于一身的仿真软件,功能极其强大。

本章介绍ProteusISIS软件的工作环境和一些基本操作。

4.1Proteus的工作界面

ProteusISIS的工作界面是一种标准的Windows界面,如图所示。

包括:

标题栏、主菜单、标准工具栏、绘图工具栏、状态栏、对象选择按钮、预览对象方位控制按钮、仿真进程控制按钮、预览窗口、对象选择器窗口、图形编辑窗口。

图4-1ProteusISIS的工作界面

4.2Proteus的仿真工具

在Proteus中的仿真主要使用到以下五种工具:

图4-2仿真使用到的工具

其中虚拟信号时仿真是输入的信号,如模拟信号、数字信号等。

电压探针和电流探针是在所要测量的地方插入一个探针,测量该探针的电压或电流。

具体使用方法如图4-3

虚拟仪器是测量时所要使用的虚拟的仪器,具体仪器如图4-3

图4-3虚拟仪器

曲线图表是根据所插入的探针而生成的曲线图,可生成的曲线图表有以下几种:

图4-4曲线图表

设计中输入信号使用模拟信号,用电压探针和电流探针生成曲线图表,从而进行输入、输出分析、频率响应分析、噪声分析和傅里叶分析。

五、电路的仿真

5.1前置电路的仿真

在前置放大电路的输入端输入10mV的正弦信号,在输出段插入电压探头,分别对电路进行输入、输出分析和频率响应分析。

图5-1前置放大电路

5.1.1输入与输出分析

图5-2前置放大电路输入和输出分析图

图中知输出信号与输入信号反相,当系统的输入信号电压值为-10mV,输出信号对应电压值为103mV,放大倍数约为10,与前置放大电路的计算值100/10=10(倍)相符。

5.1.2电路频率响应特性分析

图5-3前置放大电路频率响应特性分析图

(1)

图5-4前置放大电路频率响应特性分析图

(2)

系统的最大频率增益

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 初中教育

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1