液压课程设计说明书.docx

上传人:b****4 文档编号:4264338 上传时间:2022-11-28 格式:DOCX 页数:28 大小:1.19MB
下载 相关 举报
液压课程设计说明书.docx_第1页
第1页 / 共28页
液压课程设计说明书.docx_第2页
第2页 / 共28页
液压课程设计说明书.docx_第3页
第3页 / 共28页
液压课程设计说明书.docx_第4页
第4页 / 共28页
液压课程设计说明书.docx_第5页
第5页 / 共28页
点击查看更多>>
下载资源
资源描述

液压课程设计说明书.docx

《液压课程设计说明书.docx》由会员分享,可在线阅读,更多相关《液压课程设计说明书.docx(28页珍藏版)》请在冰豆网上搜索。

液压课程设计说明书.docx

液压课程设计说明书

课程设计

课程名称机电液综合设计项目

题目名称卧式半自动组合机床液压系统及其有关装置设计

学生学院机电工程学院

专业班级08级机电(6)班

学号

学生姓名

指导教师

 

2011年12月18日

广东工业大学课程设计任务书

题目名称

卧式半自动组合机床液压系统及其有关装置设计

学生学院

机电工程学院

专业班级

08机电6班

姓名

柳展雄

学号

3108000566

一、课程设计的内容

综合应用已学的课程,完成卧式半自动组合机床的液压系统的原理设计、液压系统的设计计算、液压系统元部件的选择、液压基本回路的实验验证、液压集成油路的设计、液压集成块的设计等。

二、课程设计的要求与数据

1.机床系统应实现的自动工作循环

(手工上料)→(手动启动)→工件定位(插销)→夹紧工件→动力头(工作台)快进→慢速工进→快退→停止→工件拔销→松开工件→(手工卸料)。

要求工进完了动力头无速度前冲现象。

工件的定位、夹紧应保证安全可靠,加工过程中及遇意外断电时工件不应松脱,工件夹紧压力、速度应可调,工件加工过程中夹紧压力稳定。

2.工件最大夹紧力为Fj;工件插销定位只要求到位,负载力小可不予计算。

3.动力头快进、快退速度v1;工进速度为v2可调,加工过程中速度稳定;快进行程为L1,工进行程为L2;工件定位、夹紧行程为L3,夹紧时间t=1s。

4.运动部件总重力为G,最大切削进给力(轴向)为Ft;

5.动力头能在任意位置停止,其加速或减速时间为△t;;工作台采用水平放置的平导轨,静摩擦系数为fs,动摩擦系数为fd。

设计参数表

序号

Fj

(N)

Ft

(N)

G

(N)

v1

(m/min)

v2

(mm/min)

L1

(mm)

L2

(mm)

L3

(mm)

△t

(s)

fs

fd

14

6000

30000

5500

6

30~1000

140

60

40

0.12

0.22

0.1

三、课程设计应完成的工作

(一)液压系统设计

根据设备的用途、特点和要求,利用液压传动的基本原理进行工况分析,拟定合理、完善的液压系统原理图,需要写出详细的系统工作原理,给出电磁铁动作顺序表。

再经过必要的计算确定液压有关参数,然后按照所得参数选择液压元件、介质、相关设备的规格型号(或进行结构设计)、对系统有关参数进行验算等。

(二)系统基本回路的实验验证

以小组为单位设计实验验证回路,经老师确认后,由该组成员共同去液压实验室在实验台上进行实验验证。

该部分说明书的撰写格式可参考液压课程实验报告,实验过程要拍一定数量的照片。

(三)液压装置结构设计

由指导老师选出其中一个小组成员的设计方案和数据,由该组成员共同完成该方案液压系统的集成块组的结构设计,尽量做到每个小组成员负责其中的一个集成块的设计。

集成块之间必须考虑到相互之间的连通关系,是一个完整的液压系统的集成块。

(四)绘制工程图、编写设计说明书

1.绘制液压系统原理图

包括系统总油路图(A3,参见图1-3)和集成块液压集成回路图(A4,参见图3-4)。

2.集成块的零件图(A3或更大,参见图3-8)。

须按GB要求打印或用铅笔绘制。

3.编写设计说明书(2万字左右),排版、结构等须规范。

四、课程设计进程安排

序号

设计各阶段内容

地点

起止日期

1

分析工况和动作要求,完成系统方案设计和设计计算,元部件选择。

宿舍

12.02~11.10

2

完成指定方案的实验验证;完成指定方案的液压系统集成油路的设计和集成块机构设计的分配,开始进行集成块的结构设计

宿舍

12.11~12.17

3

完成集成块的设计和设计说明书的撰写。

宿舍

12.18~12.24

4

答辩

工2-729

12.26

五、应收集的资料及主要参考文献

[1]李笑,吴冉泉.液压与气压传动[M].北京:

国防工业出版社,2006年03月

[2]杨培元,朱福元.液压系统设计简明手册[M].北京:

机械工业出版社,2003

[3]雷天觉等.液压工程手册[M].北京:

机械工业出版社,1990

[4]博世力士乐公司.博世力士乐工业液压产品样本[M].

[5]任建勋,韩尚勇,申华楠等.液压传动计算与系统设计[M].北京:

机械工业出版社,1982

[6]周士昌主编.机械设计手册5•第43篇•液压传动与控制[M].北京:

机械工业出版社,2000

[7]章宏甲,周邦俊.金属切削机床液压传动[M].南京:

江苏科学技术出版社,1985

 

发出任务书日期:

2011年12月2日

指导教师签名:

预计完成日期:

2011年12月26日

专业负责人签章:

主管院长签章:

 

广东工业大学本科生课程设计(论文)任务书............................1

目录...............................................................3

前言.............................................................4

1液压系统的工况分析...........................................5

2液压系统原理图..................................................8

2.1初定液压系统..................................................8

2.2确定液压系统..............................................8

3液压系统的计算和选择液压元件................................11

3.1液压缸主要尺寸的确定......................................11

3.2确定液压泵的流量、压力和选择泵规格.............................12

3.3液压阀的选择...............................................13

3.4确定管道尺寸..............................................14

3.5液压油箱容积的确定...................................15

4液压系统的验算.........................................16

4.1压力损失的验算...........................................16

4.2系统的温升的验算..........................................18

5液压系统的实验验证...........................................20

6液压集成块结构与设计......................................21

6.1液压集成回路设计..............................................21

6.2集成块设计...............................................22

设计总结.....................................26

参考文献..................................................27

附录.....................................................28

 

前言

液压与气压传动,又称液压气动技术,由于自身的特点——重量轻、体积紧凑、能

实现无级调速、便于实现频繁及平稳的换向、因而在现代化机械中使用得越来越多,是

机械设备中发展速度最快的技术之一,特别是近年来,随着机电一体化技术的发展,与

微电子、计算机技术相结合,液压与气压传动进入了一个新的发展阶段。

液压与气压传动是以流体(液压油液或压縮空气)为工作介质进行能量传递和控制

的一种传动形式。

主要由能源装置、执行元件、控制元件、辅助元件组成。

液压与气压传动的优缺点

1)布置方便灵活。

2)无级调速,调速范围可达2000:

1。

3)传动平稳,易于实现快速启动、制动和频繁换向。

4)操作控制方便,易于实现自动控制、中远距离控制和过载保护。

5)标准化、系列化、通用化程度高,有利于縮短设计周期、制造周期和降低成本。

6)传动效率不高;维护要求较高

液压与气压传动的应用和发展概况

1)液压与气动技术应用在机床、工程机械、冶金机械、塑料机械、农林机械、汽车、

船舶、航天航空等国民经济各行各业,是自动化技术不可缺少的手段。

2)元件小型化、系统集成化、机电液(气)一体化是液压与气动技术的必然发展趋势;

元件与系统的CAD/CAT与计算机实时控制是当前的发展方向。

 

1.系统的工况分析

动作要求及工作参数

1.机床系统应实现的自动工作循环为:

(手工上料)→(手动启动)→工件定位(插销)→夹紧工件→动力头(工作台)快进→慢速工进→快退→停止→工件拔销→松开工件→(手工卸料)。

要求:

工进完了动力头无速度前冲现象。

工件的定位、夹紧应保证安全可靠,加工过程中及遇意外断电时工件不应松脱,工件夹紧压力、速度应可调,工件加工过程中夹紧压力稳定。

2.工件最大夹紧力为Fi=6000N;工件插销定位只要求到位,负载力小可不予计算。

运动部件总重力为G=5500N,最大切削进给力(轴向)为Ft=30000N。

动力头快进、快退速度v1=6m/min;工进速度为v2=30—1000mm/min可调,加工过程中速度稳定;快进行程为L1=140mm;工进行程为L2=60mm;工件定位、夹紧行程为L3=40mm。

动力头能在任意位置停止,其加速或减速时间为t=0.12s,工作台采用水平放置的平导轨,静摩擦系数为fs=0.22,动摩擦系数为fd=0.1。

首先根据已知条件,绘制运动部件的速度循环图,如图1-1所示。

然后计算各阶段的外负载并绘制负载图。

液压缸所受外负载F包括三种类型,即

F=Ft+Ff+Fa………………………………(1-1)

式中Ft——工作负载,对于金属切削机床来说,即为沿活塞运动方向的切削力,本设计中为30000N;

Fa——运动部件速度变化时的惯性负载;

Ff——导轨摩擦阻力负载,启动时为静摩擦阻力,启动后为动摩擦阻力,对于平导轨Ff可由下试求得

Ff=f(G+FRn);

G——运动部件重力;

FRn——垂直于导轨的工作负载,本设计中为零;

f——导轨摩擦系数,静摩擦系数为0.22,动摩擦系数为0.1。

则求得

静摩擦阻力Ffs=0.22×5500N=1210N…………………(1-2)

动摩擦阻力Ffd=0.1×5500N=550N

Fa=(G/g)×(ΔV/Δt)………………………(1-3)

=(5500/9.8)×(6/(0.12×60))N=468N

式中g--重力加速度;

Δt--加速或减速时间,一般为0.01-0.5s,本设计中为0.12s;

ΔV--在Δt时间内的速度变化量。

本设计中ΔV=6m/min。

启动、加速时外负载为:

F=Ffs+Fa=1210+468=1678N

快进、快退时外负载为:

F=Ffa=550N

工进时外负载为:

F=Ffa+Ft=550+30000=30550N

根据上述计算结果,列出个工作阶段所受的外负载(见表1-1)并画出如图1-2所示的负载循环图。

图1-1速度循环图

图1-2负载循环图

表1-1工作循环各阶段的外负载

工作循环

外负载F(N)

工作循环

外负载F(N)

启动、加速

Ffs+Fa

1678

工进

Ffa+Ft

30550

快进

Ffa

550

快退

Ffa

550

 

2.拟订液压系统原理图

2.1、初定液压系统

1)确定供油方式

液压泵的结构形式依据初定系统压力来选择,当p<21MPa时,选用齿轮泵和叶片泵。

考虑到该机床在工作进给时负载较大,速度较低;而在快进、快退时负载较小,速度较高;从节省能量、减少发热考虑,泵源系统宜选用双泵供油或变量泵供油。

现采用带压力反馈的限压式变量叶片泵。

2)调速方式的选择

在中小型专用机床的液压系统中,进给速度的控制一般采用节流阀或调速阀。

根据铣削类专用机床工作时对低速性能和速度负载特性都有一定要求的特点,决定采用限压式变量泵和调速阀组成的容积节流调速。

这种调速回路具有效率高、发热小和速度刚好的特点,并且调速阀装在回油路上,具有承受切削力的能力。

3)速度换接方式的选择

本系统用电磁阀的快慢速换接回路,它的特点是结构简单、调节行程比较方便,阀的安装也较容易,但速度换接的平稳性较差。

4)夹紧回路的选择

用三位四通电磁阀来控制夹紧、松开换向动作时,考虑到夹紧时间可调节和当进油路压力瞬时下降时仍能保持夹紧力,所以接入节流阀调节和单向阀保压。

在该回路中还装有减压阀,用来调节夹紧力的大小和保持夹紧力的稳定。

5)定位回路的选择

用三位四通电磁阀来控制插销、拔销换向动作时,考虑到当进油路压力瞬时下降时仍能保持插销力,所以接入单向阀保压。

在该回路中还装有减压阀,用来调节夹紧力的大小和保持夹紧力的稳定。

2.2、确定液压系统

1)系统工作原理

最后把所选择的液压回路组合起来,即可组合成图2-1所示的液压系统原理图。

图2-1液压系统原理图

2)工作循环过程:

一.定位插销——按启动按钮,电磁阀7YA得电,换向阀在右位,定位缸16下腔进油,活塞杆向上运动定位插销;

二.工件夹紧——当定位完成后,油液压力升高,压力继电器BP1发出信号,电磁铁5YA得电,换向阀在右位,夹紧缸17下缸进油,活塞杆向上运动,工件夹紧;

三.快进——夹紧完成后,压力上升,压力继电器BP2发出信号,使电磁铁1YA、3YA得电,电磁,换向阀4处于左位,换向阀5处于右位,进给缸18左腔进油,右腔排油流向左腔,形成差动连接,实现快进;

四.工进——当进给缸活塞杆上的挡块压下行程开关2SQ后,使电磁铁3YA失电,进给缸16的回油流回油箱,实现工进;

五.快退——当进给缸活塞杆上的挡块压下行程开关1SQ后,电磁铁1YA失电,使电磁铁2YA得电,进给缸右腔进油,左腔流回油箱,实现快退;

六.拔销——当进给缸活塞杆上的挡块压下行程开关3SQ后,使2YA失电,进给缸停止工作,7YA失电,6YA得电,换向阀14处左位,定位缸16上腔进油,下腔的油液直接接回油箱,实现拔销。

七.放松——当定位缸活塞杆上的挡块压下行程开关4SQ后,5YA、6YA失电,4YA得电,夹紧缸17上腔进油,下腔经单向节流阀9流回油箱,实现放松。

八.系统停止——当夹紧缸活塞杆上的挡块压下行程开关5SQ后,电磁铁4YA失电,系统停止工作。

3)电磁换向阀动作顺序表

表2-1电磁换向阀动作顺序表

1YA

2YA

3YA

4YA

5YA

6YA

7YA

插销

-

-

-

-

-

-

+

夹紧

-

-

-

-

+

-

+

快进

+

-

+

-

+

-

+

工进

+

-

-

-

+

-

+

快退

-

+

-

-

+

-

+

拔销

-

-

-

-

+

+

-

放松

-

-

-

+

-

-

-

停止

-

-

-

-

-

-

-

 

3.液压系统的计算和选择液压元件

3.1、液压缸主要尺寸的确定

(1)工作压力P的确定。

工作压力P可以根据负载大小以及机器的类型来初步确定,现参阅参考文献[2]表2-1,取液压缸的工作压力为4MP。

(2)计算液压缸内径D和活塞杆直径d

1)进给缸内径D和活塞杆直径d

由负载图知道最大负载F为30550N,按参考文献[2]可取P2为0.5MP,ηcm为0.95,考虑到快进、快退速度相等,取d/D=0.7。

将上述数据代入参考文献[2]式(2-3)

………………………(3-1)

根据参考文献[2]表2-4,将液压缸内径圆整为标准系列直径D工作=100mm;活塞杆直径d工作按参考文献[1],取d/D=0.7,按参考文献[2]表2-5,活塞杆直径系列取d工作=70mm。

2)夹紧缸内径D和活塞杆直径d

按工作要求夹紧力由单个夹紧缸提供,考虑到夹紧力的稳定,夹紧缸的工作压力应该低于进给液压缸的工作压力,现取夹紧缸的工作压力为3MPa,回油背压为零,ηcm为0.95,则按参考文献[2]式(2-3)可得

按参考文献[2]表(2-4)及表(2-5)液压缸和活塞杆的尺寸系列,取夹紧液压缸的D夹紧和d夹紧分别为63mm和45mm。

3)定位缸缸内径D和活塞杆直径d和夹紧缸尺寸一样

按最低工进速度验算液压缸的最小稳定速度,由参考文献[2]式(2-4)可得

………………………(3-2)

式中,

是由产品样本查得GE系列调速阀AQF3-E10B的最小稳定流量为50mL/min。

本设计中调速阀是安装在回油路上,故液压缸节流腔有效工作面积应该选取液压缸有杆腔的实际面积,即

可见上述不等式能满足,液压缸能达到所需低速。

(3)计算在各工作阶段液压缸所需的流量

3.2、确定液压缸的流量、压力和选择泵的规格

(1)泵的工作压力的确定

考虑到正常工作中进油管路有一定的压力损失,所以泵的工作压力为

………………………………………(3-4)

式中

——液压泵最大工作压力;

——执行元件最大工作压力;

——进油管路中的压力损失,初算时简单系统可取0.2—0.5MPa,复杂系统取0.5—1.5,本设计中取0.5MPa

=(4+0.5)MPa=4.5MPa

上述计算所得的

是系统的静态压力,考虑到系统在各种工况的进度阶段出现的动态压力往往超过静态压力。

另外考虑到一定的压力储备量,并确保泵的寿命,因此选泵的额定压力Pn应该满足Pn

(1.25-1.6)

中低压系统取小值,高压系统取大值。

在本设计中Pn=1.25

=5.625MPa。

(2)泵的流量确定

液压泵的最大流量应为

…………………………………(3-5)

式中

--液压泵的最大流量;

---同时动作的各执行元件所需要流量之和的最大值。

---系统泄露系数,一般取KL=1.1—1.3,现取KL=1.2。

=

=1.2×24L/min=28.8L/min

(3)选择液压泵的规格

根据以上算得的Pp和

再查阅参考文献[2],现选用YBX-25限压式变量叶片泵,该泵的基本参考为:

每转排量V=25mL/r,泵的额定的压力Pn=6.3MPa,电动机转速

,容积效率

=0.85,总效率

=0.7。

(4)与液压泵匹配的电动机的选定

首先分别算出快进与工进两种不同工况时的功率,取两者较大值作为选择电动机规格的依据。

由于在慢进时泵输出的流量减小,泵的效率急剧降低,一般当流量在0.2-1L/min范围内时,可取

=0.03—0.14。

同时还应注意到,为了使所选择的电动机在经过泵的流量特性曲线最大功率点时不至停转,需进行验算,即

……………………………………(3-6)

式中

--所选电动机额定功率;

--限压式变量泵的限定压力

---压力为

时,泵的输出流量。

首先计算快进时的功率,快进时的外负载为550N,进油路的压力损失0.3MPa,由式(3-4)得

快进时所需电动机功率为

工进时所需电动机功率P为

查阅文献[4],选用Y90s-4型电动机,其额定功率为1.1kW,额定转速为1400r/min。

根据产品样本可查YBX-25的流量压力特性曲线。

再由已知的快进时流量为24L/min,工进时的流量为7.85L/min,压力为4.5MPa,作出泵的实际工作时的流量压力特性曲线,如图3-1所示:

图3-1YBX-25液压泵特性曲线

查得该曲线拐点处的流量为24L/min,压力为0.7MPa,该工作点对应的功率为

所选电动机功率满足(3-6),拐点处能正常工作。

3.3、液压阀的选择

本液压系统可采用力士乐系统或GE系列的阀。

此方案:

均选用GE系列阀。

根据所拟定的液压系统图,按通过各元件的最大流量来选择液压元件的规格。

选定的液压元件如表4所示。

表3-1液压元件明细表

序号

元件名称

方案

通过流量(L/min)

1

滤油器

XU-B32×100

28.8

2

液压泵

YBX-25

28.8

3

溢流阀

YF3-E10B

24

4

三位四通换向阀

34EF30-E10B

24

5

单向调速阀

AQF3-E10B

24

6

二位四通换向阀

23EF3B-E10B

24

7

减压阀

JF3-10B

6.5

8

压力表开关

KF3-E3B

共用一个

9

压力表开关

KF3-E3B

10

单向阀

AF3-EA10B

6.5

11

三位四通换向阀

34EF3O-E10B

6.5

12

单向节流阀

ALF-E10B

6.5

13

压力继电器

DP1-63B

6.5

14

三位四通换向阀

34EF3O-E10B

6.5

15

单向节流阀

ALF-E10B

6.5

16

压力继电器

DP1-63B

6.5

3.4、确定管道尺寸

油管内径尺寸一般可参照选用的液压元件接口尺寸而定,也可按管路允许流速进行计算。

本系统主油路流量为差动时流量q=vA=

压油管的允许流速取v=4m/s,则内径d为

若系统主油路流量按快退时取q=24L/min,则可算得油管内径d=11.3mm。

综合诸因素,现取油管的内径d为14mm。

吸油管同样可按上式计算(q=28.8L/min、v=1.5m/s),选参照YBX-25变量泵吸油口连接尺寸,取吸油管内径d为25mm。

3.5、液压油箱容积的确定

本设计为中压液压系统,液压油箱有效容量按泵的流量的5-7倍来确定,参照文献[2],现选用容量为160L的油箱。

 

4.液压系统的验算

已知该液压系统中进、回油路的内径为14mm,各段油管的长度分别为:

AB=0.2m,AC=1.5m,AD=1.5m,DE=2m。

选用L-HL32液压油,考虑油的最低温度为15℃,查得15℃时该液压油的运动粘度

=150cst=1.5cm2/s,油的密度ρ=920kg/

4.1、压力损失的验算

(1)工进时油路压力损失

1)工作进给时进油路压力损失

运动部件工作进给时的最大速度为1m/min,进给时的最大流量为7.85L/min,则液压油在管内流速v1为

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1