WCuW合金薄膜的矿床及其结构毕业论文外文文献翻译及原文.docx

上传人:b****3 文档编号:4230535 上传时间:2022-11-28 格式:DOCX 页数:20 大小:838.08KB
下载 相关 举报
WCuW合金薄膜的矿床及其结构毕业论文外文文献翻译及原文.docx_第1页
第1页 / 共20页
WCuW合金薄膜的矿床及其结构毕业论文外文文献翻译及原文.docx_第2页
第2页 / 共20页
WCuW合金薄膜的矿床及其结构毕业论文外文文献翻译及原文.docx_第3页
第3页 / 共20页
WCuW合金薄膜的矿床及其结构毕业论文外文文献翻译及原文.docx_第4页
第4页 / 共20页
WCuW合金薄膜的矿床及其结构毕业论文外文文献翻译及原文.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

WCuW合金薄膜的矿床及其结构毕业论文外文文献翻译及原文.docx

《WCuW合金薄膜的矿床及其结构毕业论文外文文献翻译及原文.docx》由会员分享,可在线阅读,更多相关《WCuW合金薄膜的矿床及其结构毕业论文外文文献翻译及原文.docx(20页珍藏版)》请在冰豆网上搜索。

WCuW合金薄膜的矿床及其结构毕业论文外文文献翻译及原文.docx

WCuW合金薄膜的矿床及其结构毕业论文外文文献翻译及原文

 

毕业设计(论文)

外文文献翻译

 

文献、资料题目:

溅射磁控管W-Cu-W合金薄膜的矿床及其结构

文献、资料来源:

文献、资料发表(出版)日期:

院(部):

专业:

班级:

姓名:

学号:

指导教师:

翻译日期:

2017.02.14

 

DepositionandstructureofW–Cu

multilayercoatingsbymagnetron

sputtering

CWang1,4,PBrault1,5,CZaepffel1,JThiault1,APineau2and

TSauvage3

1GroupedeRecherchessurl’Energ´etiquedesMilieuxIonis´es,UMR6606CNRS-Universit´e

d’Orl´eansBP6744,45067Orl´eansCedex2,France

2CentredeRecherchessurlaMati`ereDivis´ee,1BruedelaF´erollerie,F-45071Orl´eans

Cedex2,France

3Centred’EtudesetdeRecherchesparIrradiation,UPR33CNRS,3AAvenuedela

RechercheScientifique,45071Orl´eansCedex2,France

E-mail:

Pascal.Brault@univ-orleans.fr

Received22July2003

Published15October2003

Onlineatstacks.iop.org/JPhysD/36/2709

Abstract

W–Cu–WmultilayermetalliccoatingsaredesignedanddepositedbydcmagnetronsputteringonanFesubstrate.Correlationsbetweenthedepositionparameters,suchastargetpowerandArgaspressure,andthefilmcharacteristicsareinvestigated.Especially,depositionparametersforadenseW–Cumultilayercoatingarediscussed.Thecoatingsexhibitsmallgrainsizesandadensesurfacestructureforhightargetpowerandlowargonpressure,leadingtodenseandwelladhesivefilms.

1.Introduction

Tungsten,asahigh-atomicnumber(high-Z)andrefractorymaterial,hasattractedconsiderableinterestforitspotentialuseintheITERplasma-facingcomponentsandinmicroelectronictechnologyduetoitsexcellentthermalandelectricalproperties[1–3].Inaddition,tungsten-basedcoatingshavebeendevelopedforapplicationsinthefieldofwearorerosion-resistantcomponentsinhigh-temperature/highvacuumenvironments,forexampleW–C,W–Si,W–N,W–Re,W–La2O3[4–7].Ontheotherhand,duetotheveryhighthermalconductivityandfracturetoughness,Cuanditsalloyshavebeenwidelyusedasheatsinksinhigh-heatfluxplasmafacingcomponents.SoW–Cubecomesanattractivecandidatematerialforheatsinksinplasmaexperimentsaswellasarmour[4,8,9].Becausethereis(almost)nomutualsolidsolubility,onlyW–Cupseudo-alloys,asacompositematerial,areproduced.Fromaresearchpointofview,howtoobtainadensestructureandhowtoovercomethebigmismatchofthermalexpansionremainopenquestions.Finegrainsandcompositionally/functionallygradeddesignhavebeendiscussed[4,10,11]asanalternativeroute.However,W–Cucoatingshavemostlybeenfabricatedbymechanicalalloyingoftheirpowdermixtures[12,13].SofartherehavebeenfewstudiesreportedonaW–Cumultilayercoatingbyphysicalvapourdeposition(PVD).Itiswell-knownthat,inPVDtechnology,thephysicalpropertiesofsputteredtungstenorcopperfilmsdependstronglyonthedepositionparameters,especiallythosecontrollingthekineticenergyofdepositingspecies.Forexample,Hubleretal[14]claimedthatthekineticenergymustbecontrolledinthe(best)energyrangeof5–30eVperatom.From0.1to10eV,thefilmgrowthmechanismchangesfromanisland-growthmodetowardsalayer-by-layermode,andbelowabout5eV,theenergyisineffectiveforchangingthephysicalprocess.Aboveabout30eV,defectsareintroducedintothefilmbydisplacementdamage.Thedepositionfluxandtheenergyoftheatomsandionsonthesubstratedeterminethedepositionrateandthefilmcharacteristics,respectively[15,16].Furthermore,thefluxandenergyaremainlycontrolledbythedepositionvariables:

targetpower(involvingvoltageandcurrent),workingpressure(involvinggasspeciesandmassflow),substratetemperature,substratebiasvoltage,target-to-substratedistance(dT–S).Inthispaper,W–CumultilayerfilmshavebeendepositedontoanFesubstrateatroomtemperaturebydcmagnetronsputtering.Themostimportantdepositionparameters,targetpowerincludingtargetcurrentandvoltage,andArgaspressure,wereinvestigatedinordertoelucidatehowthedepositionparametersaffectthefilmcharacteristics(density,structure)andthephysicalproperties(adhesion).Goodadhesionanddensestructurearepreliminaryrequirementsforthermalstabilityandgoodbehaviourunderplasmaconditions

2.Experiments

Amagnetronsputteringdepositionsystem(APRIMVIDE),withthreeindependentlybiaseddcplanarmagnetrontargets,isusedtosputterWandCu(onetargetisidle).Theresultingplasmasarewellconfinedabovethetargets.ThetargetdiscsofpureW(99.99%)andpureCu(99.99%)haveadiameterof10cmandathicknessof0.6cm,respectively.Thethreetargetsurfacesare30°tiltedfromthesubstratesurfacedirection,andthetargetsurfacecentreismadetofacethehalfradiusofthesubstrate,asshowninfigure1.Thedistancefromthetargetcentretothesubstratehalfradiusis9.0cm.Thesubstrateshave10cm×10cmsurfaceareaandarevacuumtransferredonarotatingholder.Thebasevacuuminthedepositionchamberisbetterthan1×10−7Pausingaturbomolecularpump(ATP900,ALCATEL).Acoldcathode/piranigauge(ACC1009,ALCATEL)isusedtomeasurethevacuumintherangeof10−7–105Pa.Theworkinggasisargonanditisintroducedintothevacuumchamberatafixedflowrateof30standardcubiccentimetresperminute(sccm).ThesubstratesarepureFe(200μmthick)andgreaseisultrasonicallyremovedusingacetonebeforemountingonthesubstrateholder.Priortoanydeposition,thetargetsurfaceissputter-cleanedfor3–5minwhilethesubstrateisprotectedbyamovableshield.Thedepositioniscarriedoutatroomtemperaturewithoutextraheatingorcoolingofthesubstrate.Thus,theeffectivesubstratetemperaturedependsonthedepositionconditions.Thetargetpowerischangedfrom100to650Wusingpowersuppliesofconstantpowertype.TheArgaspressureisvariedfrom0.2to2.5Pabycontrollingthepumpingspeed(throttling)andkeepingthegasflowrateconstant.ThedepositiontimeischosenaccordingtothedesiredcoatingthicknessofW(400nm)andCu(200nm).Thecross-section,filmthickness,andsurfacemorphologyincludingthegrainsizearemeasuredbyscanningelectronmicroscopy(SEM)(Hitachi:

S-4200).Thedepositionratesareestimatedfromthemeanthicknessmeasurementstakenfromcross-sectionalSEMmicrographs

Figure1.Schematicdrawingofthegeometricalpositionofthetargetandthesubstrate.

withknowndepositiontime.Thecrystallinestructureismeasuredbyx-raydiffraction(XRD).ThesurfacearealdensityandthelayerdepthprofilearedeterminedbyRutherfordbackscatteringspectroscopy(RBS)usinga2.0MeV4He+ionbeamofaVandeGraaffaccelerator.

3.Resultsanddiscussion

ThesampleswiththelayeredstructureW(400nm)–Cu(200nm)–W(400nm)weredepositedonFesubstrateswithvariabletargetpowersandworkingpressures.Inordertoinvestigatetheeffectsofthetargetpoweronthefilmcharacteristics,thepowerwaschangedfrom200to650Wfortungstenandfrom100to300Wforcopperwhilekeepingtheworkingpressureconstantat1.0Pa.Figure2displaystheevolutionofthetargetbiasvoltage,V,andcurrent,I,asafunctionoftheinputpower.Withthesamepower,theelectriccurrentsattheWtargetarealwayslargerthantheCutarget,andconversely,WtargetbiasvoltagesaresmallerthanCutargetbiasvoltages.Figure3indicatesthatthedepositionratesofbothWandCuincreaselinearlywithincreasingtargetpowerforaconstantgaspressureof1.0Pa.Fortargetpowersfixedat500Wfortungstenand250Wforcopper,theArpressureischangedfrom0.2to2.5Pa.Thus,figure4displaysthevolutionofthetargetbiasvoltage,V,andcurrent,IagainstArpressure.ThedifferenceindepositionratesbetweenWandCuincreasesveryfastwithincreasingpressureabove1Pa,asshowninfigure5.AmaximumdepositionrateforWandCuisreachedwhenincreasingworkingpressureatfixedtargetpowers.Fromfigure5,themaximumdepositionrateofWis1.3nms−1,withatargetpowerof500W,whentheArgaspressureis2.0Pa.ThemaximumdepositionrateofCuis1.0nms−1,withatargetpowerof250W,whentheArgaspressureis1.0Pa.Beyondthismaximum,deposition

Figure2.VariationofthetargetvoltageandcurrentwithtargetpowerforWandCusputtering(Arpressure:

1.0Pa)

Figure3.VariationofthedepositionrateofWandCuwithtargetpower(Arpressure:

1.0Pa)

Figure4.VariationofthetargetvoltageandcurrentforWandCusputteringwiththeArgaspressureatafixedtargetpower(tungsten:

500W;copper:

250W).

rateswilldecrease.Thisbehaviourresultsfromthemonotonicdecreasingtargetbiasvoltagewhiletargetcurrentcontinuouslyincreasesaspressureincreases(figure4).Thismeansthatwhilemorepositiveionsimpingeonthetarget,lessmetallicatomsandionsreachthesubstrateduetothelowerbiasvoltageleadingtolessefficientsputtering.Moreover,theexcessArgaspressureinducesashortermeanfreepathofAr+ionswithmorefrequentcollisions,whichinducesalowerkineticenergywhentheyimpingeonthetarget.Asaresult,itcontributestolesssputteredatoms.Atahighworkingpressure,thesputteredmetallicatomsalsohavemorecollisionsandcanbescatteredoff,whichalsoaccountsforaloweringofthedepositionrate.

Figure6showsacross-sectionalviewoftheW–Cu–Wcoatinggrownatapowerof500W(fortungsten)and250W

Figure5.CorrelationofthedepositionratesofWandCuwithArgaspressureatafixedtargetpower(tungsten:

500W;copper:

250W)

.

Figure6.TheSEMphotographofacross-sectionstructureofaW–Cu–Wmultilayercoating(targetpower:

W,500W;Cu,250W;pressure:

1.0Pa).

Figure7.ComparisonofSEMphotographsofWsurfacemor

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1