金发科技谐波治理方案设计.docx
《金发科技谐波治理方案设计.docx》由会员分享,可在线阅读,更多相关《金发科技谐波治理方案设计.docx(35页珍藏版)》请在冰豆网上搜索。
金发科技谐波治理方案设计
金发科技供电系统
谐波治理方案
1、谐波简介3
1.1、谐波的基础了解3
1.2、谐波来源3
1.3、谐波的危害4
2、现场谐波的测量与分析5
2.1、国家标准对谐波的要求5
2.2、现场数据测试背景6
2.3、谐波测试数据7
2.3.1、1#进线柜谐波数据测试7
2.3.2、三台氧化炉变频器动力柜谐波数据测试(数据相似,只测一台)8
2.3.3、1D5-3驱动系统配电柜回路谐波数据测试10
2.3.4、1D7-2高温炭化炉动力柜回路谐波数据测试12
2.3.5、2#进线柜谐波数据测试13
2.3.6、2D6-1空压机控制柜回路谐波数据测试15
2.3.7、2D6-2冷却循环系统回路谐波数据测试17
2.3.8、2D6-5消防泵切换箱回路谐波数据测试19
2.4、谐波测试数据分析及设备选型21
2.4.1谐波测试数据分析21
2.4.2选型统计表22
3、谐波治理的意义及价值24
3.1谐波治理的意义24
3.2谐波治理的价值24
I变压器损耗24
II线路损耗27
4.AccuSine有源滤波器产品介绍28
4.1AccuSine技术参数30
4.2AccuSine产品特性31
4.4AccuSine部控制原理33
1、谐波简介
1.1、谐波的基础了解
1.谐波:
是对周期性交流量进行付立叶级数分解,得到的基波频率大于1的整数倍的频率分量,由于谐波的频率是基波频率的整数倍,也常称它为高次谐波。
2.谐波源:
向公网中注入谐波电流或在公网中产生谐波电压的电气设备(分为电流、电压谐波源)
3.产生电流谐波源的主要设备:
非线性用电设备、变压器、发电机、直流调速装置、中频/高频感应电炉、电流型变频器。
4.产生电压谐波源的设备:
交流变频器、UPS/EPS设备
谐波电压的产生电压与电流畸变的关系
对于每个电流谐波In,对应该频率的电源阻抗Zsn
两端存在谐波电压UnUn=Zsn.In
各次谐波畸变Hn=Un/u1(U1:
基波值)
THD(%)=
在各次谐波频率下的电源阻抗为电压出现畸变的基本,如果电源阻抗低,电压畸变就低
综上所述:
产生电流谐波畸变依赖于负载、产生电压谐波畸变依赖于电源,低的电源阻抗利于谐波电流流向电源,但同时电压畸变往往也较低。
高电源阻抗阻止谐波电流流向电源,但电压总畸变往往也较高电源阻抗与总谐波畸变之间的变化是非线性的。
1.2、谐波来源
电力系统本身包含的能产生谐波电流的非线性元件主要是变压器的空载电流,交直流换流站的可控硅控制元件,可控硅控制的电容器、电抗器组等。
但是,电力系统谐波更主要来源是各种非线性负荷用户,如各种整流设备、调节设备、电弧炉、轧钢机以及电气拖动设备。
1.3、谐波的危害
谐波的危害主要表现为:
1、加大线路损耗,使电缆过热,绝缘老化,降低电源效率。
2、使电容器过载发热,加速电容器老化甚至击穿。
3、保护装置的勿动或拒动,导致区域性停电事故。
4、造成电网谐振。
5、影响电动机效率和正常运行,产生震动和噪音,缩短电动机寿命。
6、损坏电网中敏感设备。
7、使电力系统各种测量仪表产生误差。
8、对通讯、电子类设备产生干扰;引起系统故障或失灵。
9、零序谐波导致中性线电流过大,造成中性线发热甚至火灾。
2、现场谐波的测量与分析
2.1、国家标准对谐波的要求
根据中华人民国国家标准《电能质量、公用电网谐波》GB/T14549-93中规定公用电网谐波电压(相电压)、电流限值如下:
1)谐波电压限值
公用电网谐波电压(相电压)不应超过下表中规定的允许值。
电网标称电压KV
电压总谐波畸变率%
各次谐波电压含有率:
%
奇数
偶数
0.38
5.0
4.0
2.0
10
4.0
3.2
1.6
2)谐波电流限值
a)公共连接点的全部用户向该点注入的谐波电流分量(方均根值)不应超过下表中规
定的允许值。
b)同一公共连接点的每个用户向电网注入的谐波电流允许值按此用户在该点的协议容量与其公共连接点的供电设备容量之比进行分配。
2.2、现场数据测试背景
由于现场安装的PM5350仪表具有测量谐波的功能,所以采用先从仪表上判断出谐波含量较大的回路,再使用专业的谐波测量仪器FLUKE表进行详细测量。
现场选取的谐波测量点如下图所示:
2.3、谐波测试数据
2.3.1、1#进线柜谐波数据测试
1)1#进线三相电流波形
由图可见,1#总线上含有谐波电流,并导致总线上的电流发生畸变。
2)1#进线三相电流谐波柱状图
由图可见,1#总线上包含3次、5次和7次谐波。
3)1#进线三相电流谐波含量详细数据
4)1#进线电压\电流\频率实测值
经分析谐波电流的含量如下:
A相
B相
C相
A相谐波电流
B相谐波电流
C相谐波电流
三相电流实测值
526A
578A
553A
总谐波含量
9.4%
10.1%
9.2%
49.44A
58.4A
50.9A
3次谐波含量
4.6%
4.7%
2.0%
24.2A
27A
11.1A
5次谐波含量
2.8%
3.1%
3.0%
14.7A
18.0A
16.6A
现在对1#进线下各回路的谐波含量进行测量和分析。
2.3.2、三台氧化炉变频器动力柜谐波数据测试(数据相似,只测一台)
1)氧化炉变频器动力柜谐波含量柱状图
由图可知,氧化炉回路中含有大量的谐波,其中5次、7次的谐波含量较大。
2)氧化炉变频器动力柜谐波含量详细数据
3)氧化炉变频器动力柜电压\电流\频率实测值
经分析,氧化炉变频器动力柜谐波电流的含量如下:
A相
B相
C相
A相谐波电流
B相谐波电流
C相谐波电流
三相电流实测值
25A
34A
30A
总谐波含量
69.5%
70%
77.2%
17.4A
23.8A
23.2A
3次谐波含量
12.4%
9.7%
20.3%
3.1A
3.3A
6.1A
5次谐波含量
50.8%
52.7%
58.4%
12.7A
17.9A
17.5A
7次谐波含量
39.4%
40.3%
39.3%
9.9A
13.8A
11.8A
2.3.3、1D5-3驱动系统配电柜回路谐波数据测试
1)1D5-3回路谐波含量柱状图
由图可知,1D5-3驱动系统配电柜中含有大量的谐波,其中除7次、13次谐波外,各次谐波含量都非常大。
2)1D5-3驱动系统配电柜谐波含量详细数据
3)1D5-3驱动系统配电柜的电压\电流\频率实测值
经分析,1D5-3驱动系统配电柜谐波电流含量如下:
A相
B相
C相
A相谐波电流
B相谐波电流
C相谐波电流
三相电流实测值
9A
8A
10A
总谐波含量
141.8%
151.1%
124.6%
12.8A
12.1A
12.5A
3次谐波含量
22.7%
15%
19.7%
2.0A
1.2A
2.0A
5次谐波含量
69.4%
76.5%
60.8%
6.2A
6.1A
6.1A
7次谐波含量
53.6%
70.1%
50.1%
4.8A
5.6A
5.0A
9次谐波含量
19.3%
16.7%
11.6%
1.7A
1.3A
1.16A
11次谐波含量
42.9%
38.7%
35.8%
3.9A
3.1A
3.58A
13次谐波含量
28.4%
38.1%
27.6%
2.6A
3.0A
2.8A
2.3.4、1D7-2高温炭化炉动力柜回路谐波数据测试
1)1D7-2高温炭化炉动力柜回路谐波含量柱状图
由图可知,1D7-2高温炭化炉动力柜回路中含有大量的谐波,其中3次、5次、谐波含量较大。
2)1D7-2高温炭化炉动力柜回路谐波含量详细数据
3)1D7-2高温炭化炉动力柜电压\电流\频率的实测值
经分析,1D7-2高温炭化炉动力柜电流谐波含量如下所示:
A相
B相
C相
A相谐波电流
B相谐波电流
C相谐波电流
三相电流实测值
243A
252A
436A
总谐波含量
31.8
33%
10.4%
77.3A
83.2A
45.3A
3次谐波含量
28.2%
29.5%
3.8%
58.5A
74.3A
16.6A
5次谐波含量
9.6%
9.6%
2.2%
23.3A
24.2A
9.6A
7次谐波含量
6.4%
7.2%
1.6%
15.6A
18.1A
2.6A
2.3.5、2#进线柜谐波数据测试
1)2#进线三相电流波形
由图可见,2#总线上含有谐波电流,并导致总线上的电流发生畸变。
2)2#进线三相电流谐波柱状图
由图可见,2#总线上包含5次和7次谐波。
3)2#进线三相电流谐波含量详细数据
3)2#进线电压\电流\频率实测值
经分析,2#进线电流谐波含量如下表所示:
A相
B相
C相
A相谐波电流
B相谐波电流
C相谐波电流
三相电流实测值
493A
549A
507A
总谐波含量
16.2%
16.8%
16.7%
79.9A
92.2A
84.7A
3次谐波含量
1.9%
1.8%
1.8%
9.4A
9.9A
9.1A
5次谐波含量
12.2%
12.6%
12.2%
60.1A
69.2A
61.9A
7次谐波含量
9.2%
9.8%
10%
45.4A
53.8A
50.7A
现在对2#进线下各回路的谐波含量进行测量和分析。
2.3.6、2D6-1空压机控制柜回路谐波数据测试
1)2D6-1空压机控制柜回路谐波含量柱状图
由图可知,2D6-1空压机控制柜回路中含有大量的谐波,且各次谐波含量都非常大。
2)2D6-1空压机控制柜回路谐波含量详细数据
3)2D6-1空压机控制柜的电压\电流\频率实测值
A相
B相
C相
A相谐波电流
B相谐波电流
C相谐波电流
三相电流实测值
7A
8A
8A
总谐波含量
126.2%
145.7%
101.9%
8.8A
11.7A
8.2A
3次谐波含量
60.7%
65.7%
47.7%
4.2A
5.3A
3.8A
5次谐波含量
58.9%
67.4%
43.1%
4.1A
5.4A
3.4A
7次谐波含量
52.3%
58.4%
36.7%
3.7A
4.7A
2.9A
9次谐波含量
48.2%
54%
37.5%
3.4A
4.3A
3A
11次谐波含量
39.7%
47%
33.1%
2.8A
3.7A
2.6A
13次谐波含量
28.4%
36.6%
24.9%
2.0A
2.9A
2.0A
15次谐波含量
26.0%
34.1%
24.6%
1.8A
2.7A
2.0A
2.3.7、2D6-2冷却循环系统回路谐波数据测试
1)2D6-2冷却循环系统回路谐波含量柱状图
由图可知,2D6-2冷却循环系统回路中含有的谐波,其中5次、7次谐波含量较大。
2)2D6-2冷却循环系统回路谐波含量详细数据
3)2D6-2冷却循环系统回路的电压\电流\频率实测值
经分析,2D6-2冷却循环系统回路的电流谐波含量如下所示:
A相
B相
C相
A相谐波电流
B相谐波电流
C相谐波电流
常用负荷电流
87A
89A
89A
总谐波含量
30.3%
30.9%
31.4%
26.4A
27.5A
27.9A
5次谐波含量
24.5%
24.8%
26.0%
21.3A
22.1A
23.1A
7次谐波含量
16.6%
16.9%
15.7%
14.4A
15.0A
14.0A
2.3.8、2D6-5消防泵切换箱回路谐波数据测试
1)2D6-5消防泵切换箱回路谐波含量柱状图
由图可知,2D6-5消防泵切换箱回路中含有大量的谐波,其中5次、7次、11次和13次谐波含量非常大。
2)2D6-5消防泵切换箱回路谐波含量详细数据
3)2D6-5消防泵切换箱回路的电压\电流\频率实测值
经分析,2D6-5消防泵切换箱回路电流谐波的含量如下所示:
A相
B相
C相
A相谐波电流
B相谐波电流
C相谐波电流
三相电流实测值
5A
6A
5A
总谐波含量
129.4%
127.6%
134.1%
6.45A
7.7A
6.7A
3次谐波含量
19.6%
13.5%
28.5%
1A
0.81A
1.43A
5次谐波含量
84.6%
83.2%
82.3%
4.2A
5.0A
4.1A
7次谐波含量
68.4%
72.2%
78.4%
3.4A
4.3A
4.0
9次谐波含量
12.5%
5.8%
17.0%
1.0A
0.3A
0.9A
11次谐波含量
50.3%
46.3%
42.8%
2.5A
2.8A
2.1A
13次谐波含量
29.0%
33.0%
36.8%
1.5A
2.0A
1.8A
总结:
从现场测试得到的数据可以看出,所测各回路的谐波含量很大,谐波危害非常大。
由现场的负荷电流不是很大,所以并未表现出大面积的设备损坏,但谐波含量都大大超过国家标准GB/T14549《电能质量公用电网谐波》所规定的谐波限值,供电系统的电能质量污染程度非常严重,存在极大的安全隐患,必须引起有关部门高度重视,应及时治理。
2.4、谐波测试数据分析及设备选型
2.4.1谐波测试数据分析
序号
测试点
工况
常用负荷电流A
实测电流A
电流谐波率%
谐波电流A
1
1#进线
常用负荷
4100
578
10.1
58.4
2
1D5-3驱动系统
常用负荷
78
10
151
12.8
3
1D7-2高温碳化炉动力柜
常用负荷
635
436
33
83.2
4
氧化炉变频器动力柜
常用负荷
267
34
77.2
23.8
5
2#进线
常用负荷
1954
549
16.8
92.2
6
2D6-1纱架
常用负荷
58
8
145.7
11.7
7
2D6-2冷却系统
常用负荷
256
170
31.4
27.9
8
2D6-5消防泵系统
常用负荷
96
6
134.1
7.7
从表中的数据可以看出,所测各回路的谐波含量都非常大,最有效的方法是需要进行局部补偿加总补偿方式,专门治理,以实现治理效果,保证设备正常运行。
但由于补偿的回路较多,治理的成本较高,考虑到经济性,与用户协商后,选择只在总线处进行总体补偿,从一定程度上治理谐波电流。
又因总线的负荷电流较大,所以所补偿的电流应留有较大的裕度,总结谐波治理方案如下:
2.4.2选型统计表
(1)根据补偿电流的大小,选择的有源滤波器的型号如下表所示:
补偿支路
谐波电流
补偿电流
有源滤波器选型
1#进线
58.4A
200A
AccuSine/4LS-210A(1台)
2#进线
92.2A
200A
AccuSine/4LS-210A(1台)
(2)有源滤波器电流采集CT选型:
滤波器型号
CT型号
AccuSine/4LS-210A
SGK662A-250/1
(3)塑壳断路器选型:
滤波器型号
断路器型号
AccuSine/4LS-210A
NSX250-3P
(4)电力电缆选型
滤波器型号
功率电缆选择mm2(必须为多股软铜线)
接地线mm2(必须为铜线)
AccuSine/4LS-210A
YJV-0.66/1kV-1×150㎡+1×375㎡
YJV-0.66/1kV-1×10㎡
注:
电缆长度需根据现场实际情况而定。
3、谐波治理的意义及价值
3.1谐波治理的意义
1、采用合理的和高性价比的滤波方案,消除了主要谐波负载产生的谐波电流,并降低了由谐波电流引起的谐波电压(部分由外部供电线路传入)。
2、避免了由于谐波电流和谐波电压引起的系统短期和长期电气危害和故障:
a)短期:
与电容器的谐波放大和谐振,损坏电容器,并引起系统谐波增大和振荡;变压器过载;电缆过载和发热;电动机发热、效率低;对其它配电回路的影响;对控制设备的干扰;电压不平衡导致的故障等等。
b)设备和电缆过载导致的绝缘损坏,引起短路、漏电和火灾隐患;谐波电流和电压导致电气设备的提前老化、降容、损坏而不得不提前更换。
3、保障了配电系统的供电可靠性和连续性,降低了停电带来的损失和风险,有助于提高公司的生产效率和能力。
3.2谐波治理的价值
1、减少损耗,节约电能:
谐波电流流经线路、断路器、发电机,特别是变压器,会产生大量的热损耗和铁损耗,导致电能的流失。
所以使用使用有源滤波器滤除谐波电流可以减少损耗,节约电能。
I变压器损耗
变压器损耗分为:
铜耗、铁耗、介质损耗、杂散损耗等。
其铁耗又分为磁滞损耗和涡流损耗。
不管分类如何复杂,按性质分只有两类:
基本损耗和谐波损耗。
谐波环境下,考虑集肤效应时,导体的各次谐波阻抗为
(1)
式中,rn为导体中n次谐波电流所对应的电阻,Ω;n为谐波次数。
(1)变压器的铜耗
考虑集肤效应时,根据
(1)可得变压器铜耗为
(2)
式中,P为变压器铜耗,W;
各次谐波电流,A;n=1时,
表示基波电流;
为变压器绕组基波电阻;
为各次谐波含量,是指各次谐波电流与基波电流的比值,即表示为
后面公式采用都才
是为了表达方便。
表示谐波电流,
表示基波电流。
由式
(2)可知,变压器的铜损耗由两部分构成。
第一部分为基本的铜损耗,是由基波电流产生的;第二部分为谐波损耗,它是基波损耗的K倍
(3)
在变压器中,当绕组导线施加畸变电流时,发生第一次集肤效应;绕组磁化变压器铁心后,产生了畸变磁场,又施加在绕组上,在绕组导线上发生第二次集肤效应。
当变压器绕组为△-Y接线方式时,3n次零序谐波电流叠加。
变压器的谐波损耗通常归类为杂散损耗,及线圈涡流损耗,它是引起变压器铁心额外发热的重要因素。
在各类电器设备中,谐波电流的附件损耗占基本铜耗的比例,以变压器为较大。
代入数据计算得,谐波损耗为:
P=3*0.094*21022*(44.082*3+80.612*5+30.352*7+4.02*9+14.472*11+16.182*13
+2.012*15)/23022=11.92kW
即,每小时变压的铜损的电量为11.92kWh。
(2)变压器铁耗
铁耗是指发生在铁心中的损耗,铁心被外加励磁磁化,在磁化过程中产生了能量损耗。
铁耗包括磁滞损耗和涡流损耗,它导致变压器和电机效率降低,铁心温度升高,从而限制了出力的提高。
磁滞损耗是由铁心磁化极性的反转造成的,有磁性材料的尺寸和品质、磁通密度的最大值和交流电流的频率决定的。
对于正常围1.5Wb/m2以下的磁通密度,基波频率下的磁滞损耗为
(4)
式中,
为常数,其值由铁心材料和尺寸决定,通常为2;
为交流电流的基波频率;
为磁通密度n次谐波最大值;
为指数,其值取决于铁心材料,通常为1.6。
当考虑谐波时,由式(4)可得
(5)
由(5)推导得
(6)
式中,
为n次谐波的磁滞损耗标值;
为第n次谐波的磁滞损耗;n为谐波次数,n=1表示基波;
为磁通密度n次谐波最大值;
为磁化电流的第n次谐波峰值;
为总磁滞损耗。
涡流损耗是由涡流电流流动引起的功率损耗,涡流感生于变压器铁心中,由交流励磁引起。
基本涡流损耗为
(7)
式中,k为常数,取决于铁心材料、尺寸和叠片厚度,通常为4。
考虑谐波及集肤效应时,由式(7)可得
(8)
(9)
式中,
为n次谐波的磁滞损耗标值;
为第n次谐波的磁滞损耗;n为谐波次数,n=1表示基波;
为磁通密度n次谐波最大值;
为磁化电流的第n次谐波峰值;
为总涡流损耗。
则总铁耗为
(10)
由以上分析代入数据可得,谐波的磁滞损耗和涡流损耗为:
Ph谐=3*2*50*1.51.6*(3*(44.08/2102)1.6+5*(79.88/2102)1.6+7*(30.35/2102)1.6+
9*(4.05/2102)1.6+11*(14.17/2102)1.6+13*(16.18/2120)1.6+15*(2.01/2102)1.6)
=29.02kW
Pε谐=3*4*502*1.52*(32*(44.08/2102)2+52*(79.88/2102)2+72*(30.35/2102)2+
92*(4.05/2102)2+112*(14.17/2102)2+132*(16.18/2120)2+152*(2.01/2102)2)
=4.48kW
所以,变压器谐波的铁耗为
=29.02+4.48=33.50kW
(3)变压器总损耗
经上述计算得,变压器的损耗包括铜损耗和铁损耗的总和为:
P损=P铜+P铁=11.92+33.50=45.42kW
即治理谐波后,每小时可节约的电能为45.42kWh。
II线路损耗
根据计算公式:
Irms2+Il2=I含2
(Irms为谐波电流有效值,Il为治理后的负荷电流有效值,I含为治理前的负荷电流有效值)
已知谐波电流和治理前的谐波电流有效值,可算出治理后的负荷电流有效值。
从而得到投入有缘滤波器后减少的损耗电流为:
△I=I含-Il
再根据公式:
△P=[△IA*Va*cos$a+△IB*Vb*cos$b+△IC*Vc*cos$c]-Wapf
(Va为A相电压有效值,cos$a为功率因数,一般为0.97,Wapf为滤波器所有负荷损耗100A为3.0kW,由于电压畸变非常小,忽略不计其对功耗的影响)
经计算,C202车间回路的
ILc202a=√(6922-1702)=670A
所以
△Ia=692-670=22A
同理
△Ib=22A,△Ic=21A.
所以
△PC202=22*220*0.97+22*220*0.97+21*220*0.97=4.6948kW/h
同理可计算得C207车间回路
△PC207=19.8463kW/h
△P总=△PC207+△PC202=19.8463+4.6948=25.5kW/h
从上述计算可知:
投入有缘滤波器后,每小能节约电能损耗为25.5Kw。
2、现场采用了无功补偿系统,其成本不菲,谐