增加摄入欧米伽3脂肪酸可减少病理性视网膜血管形成.docx

上传人:b****3 文档编号:4091123 上传时间:2022-11-27 格式:DOCX 页数:14 大小:126.36KB
下载 相关 举报
增加摄入欧米伽3脂肪酸可减少病理性视网膜血管形成.docx_第1页
第1页 / 共14页
增加摄入欧米伽3脂肪酸可减少病理性视网膜血管形成.docx_第2页
第2页 / 共14页
增加摄入欧米伽3脂肪酸可减少病理性视网膜血管形成.docx_第3页
第3页 / 共14页
增加摄入欧米伽3脂肪酸可减少病理性视网膜血管形成.docx_第4页
第4页 / 共14页
增加摄入欧米伽3脂肪酸可减少病理性视网膜血管形成.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

增加摄入欧米伽3脂肪酸可减少病理性视网膜血管形成.docx

《增加摄入欧米伽3脂肪酸可减少病理性视网膜血管形成.docx》由会员分享,可在线阅读,更多相关《增加摄入欧米伽3脂肪酸可减少病理性视网膜血管形成.docx(14页珍藏版)》请在冰豆网上搜索。

增加摄入欧米伽3脂肪酸可减少病理性视网膜血管形成.docx

增加摄入欧米伽3脂肪酸可减少病理性视网膜血管形成

《自然•医学》:

增加摄入欧米伽3脂肪酸可减少病理性视网膜血管形成

来源:

《自然•医学》2007.7 

KipMConnor1,9,JohnPaulSanGiovanni2,9,ChatarinaLofqvist1,3,ChristopherMAderman1,JingChen1,AkikoHiguchi1,SongHong4,ElkeAPravda1,SharonMajchrzak5,DeborahCarper6,AnnHellstrom7,JingXKang8,EmilyYChew2,NormanSalemJr5,CharlesNSerhan4&LoisEHSmith1

 

1哈佛大学医学院波士顿儿童医院眼科,波士顿,麻萨诸塞州,美国

2美国国立眼科研究所流行病学临床研究中心,马里兰,美国

3瑞典Go¨teborg大学Sahlgrenska学院儿科,瑞典

4哈佛医学院手术与疼痛医学中心麻醉科,实验性治疗与再灌注损伤研究中心,波士顿,麻萨诸塞州,美国

5膜生物化学与物理学实验室,美国国家酒精滥用与酒精重度研究中心,马里兰,美国

6 国立眼科研究所主任办公室,马里兰,美国

7Go¨teborg大学Sahlgrenska学院临床神经内科,瑞典

8哈佛大学医学院麻萨诸塞州总医院药剂科,波士顿,美国

 

  很多影响视力的疾病具有两面性,即它既有血管的损害,同时也有伴随的缺氧引起的具有破坏性的新生血管形成。

包括早产儿视网膜病和糖尿病性视网膜病,这些疾病导致了美国超过4百万中年人及儿童失明。

我们研究了欧米伽-3和欧米伽-6多不饱和脂肪酸(PUFAs)对氧诱导视网膜病小鼠模型的血管损害及损坏后血管再生,及缺氧导致的病理性新生血管形成的影响1。

我们发现通过饮食或遗传方法增加组织中欧米伽-3多不饱和脂肪酸水平可增加损伤后血管生成而缩小视网膜无血管区,从而减少低氧对新生血管形成的刺激。

具有生物活性的欧米伽-3多不饱和脂肪酸衍生的调节介质:

神经保护素D1,resolvinD1及resolvinE1,可能抑制了新生血管形成。

欧米伽-3多不饱和脂肪酸的潜在影响作用及它们的生活活性代谢产物部分是通过抑制肿瘤坏死因子TNF-a而产生的。

在视网膜血管附近小胶质细胞亚组中发现了这些炎症细胞因子。

这些发现提示增加欧米伽-3多不饱和脂肪酸或它们的生物活性产物能减少病理性新生血管形成。

西方人的饮食中经常缺乏欧米伽-3多不饱和脂肪酸,早产儿通常缺乏在妊娠末三个月由母体转移给婴儿的欧米伽-3多不饱和脂肪酸2。

食物中补充欧米伽-3多不饱和脂肪酸可能有利于预防视网膜病变。

 

 表1生后17天小鼠视网膜脂肪酰基组成(%)

w-6diet       w-3diet         Wildtype           Fat-1

脂肪酸

(n=6)      (n=6)       (n=6)        (n=4)

饱和脂肪酸

PA(16:

0)  22.53(0.14)   22.81(0.24) 21.40(0.05)   21.83(0.88)

SA(18:

0)  20.30(0.12)  20.51(0.26)  19.01(0.06)  19.26(0.14)

TotalSFA     44.85(0.21)  45.39(0.43)  41.84(0.43)  42.31(1.14)

多不饱和脂肪酸

W-A(18:

1w-9)8.43(0.03)  8.79(0.09)a    6.61(0.13)   6.91(0.62)

VA(18:

1w-7)2.40(0.03)  2.21(0.04)a   2.01(0.05)   1.82(0.13)

TotalMUFA     11.98(0.10)  12.15(0.12)  9.45(0.21)  9.61(0.99)

w-6多不饱和脂肪酸

LA(18:

2w-6)0.74(0.01)  0.90(0.04)a   1.65(0.04)   1.76(0.09)

AA(20:

4w-6)8.87(0.34)   7.11(0.35)a  11.40(0.21)   8.41(0.00)a

DTA(22:

4w-6)1.25(0.15) 0.57(0.09)a   2.25(0.03)  0.85(0.05)a

DPA(22:

5w-6)4.29(0.29)  0.96(0.08)a   4.93(0.12)  0.29(0.01)a

Totalw-6-PUFA  15.82(0.39)  10.50(0.30)a 21.66(0.28) 12.69(0.10)a

w-3多不饱和脂肪酸

ALA(18:

3w-3) 0.03(0.003) 0.03(0.01) 0.01(0.00)  0.03(0.01)a

EPA(20:

5w-3)0.02(0.0002) 0.25(0.02)a  0.00(0.00)  0.52(0.01)a

DPA(22:

5w-3)0.17(0.01)  0.47(0.03)a  0.15(0.01)   0.76(0.01)a

DHA(22:

6w-3)12.65(0.93)  17.92(1.07)a 17.58(0.22) 26.58(0.39)a

Totalw-3-PUFA   12.87(0.93) 18.68(1.07)a 17.74(0.22) 27.93(0.37)a

DHA/DPAw-6    3.08(0.40)   19.63(2.32)a  3.57(0.13)   92.36(5.14)a

w-6/w-3比率      1.23            0.56         1.22           0.45

 

  视网膜脂质,按占总脂肪酸量的百分比计算,标准差在圆括号内表示,比较了喂养欧米伽-3多不饱和脂肪酸或欧米伽-6多不饱和脂肪酸饮食或喂养欧米伽-6多不饱和脂肪酸的fat-1基因或野生株对照组。

 

  PA,软脂酸;SA,,硬脂酸;SFA,饱和脂肪酸;OA,油酸;VA,vaccenicacid;MUFA,多不饱和脂肪酸;LA,亚油酸;AA,二十碳四烯酸;DTA,二十二碳四烯酸;ALA,a-亚油酸;EPA,二十碳五烯酸;DHA,,二十二碳六烯酸;欧米伽-3多不饱和脂肪酸或欧米伽-6多不饱和脂肪酸饮食或喂养欧米伽-6多不饱和脂肪酸的fat-1基因或野生株对照组数据差别明显(P≤0.005)。

 

  视网膜新生血管形成是所有年龄组人群失明的最常见原因:

包括早产儿视网膜病,成人糖尿病性视网膜病,老年人群中与年龄相关的黄斑退行性改变。

大体而言,眼睛中破坏性的血管发生可通过直接抑制新生血管形成或通过控制血管损害降低低氧刺激的新生血管形成而得到改善。

我们制作了氧诱导的血管损害的小鼠视网膜病模型,用来判定视网膜血管损害,损害后血管再生及病理性血管发生1。

      很早就确定了脂质在血管发生中的作用3,4。

视网膜中的多不饱和脂肪酸(PUFA)主要是二十二碳六烯酸(DHA;C22:

6n-3)和二十碳四烯酸(C20:

4n-6),这两种脂肪酸最初都是在神经和血管细胞膜磷脂内发现的5。

二十碳五烯酸(EPA;C20:

5n-3)被发现存在于视网膜血管内皮细胞内6。

食物来源的欧米伽-3多不饱和脂肪酸和欧米伽-6多不饱和脂肪酸,及由磷脂酶A2释放的游离脂肪酸组成了底物。

这些脂肪酸然后被转变为具有生物活性的代谢产物,如:

二十碳四烯酸转变为类花生酸类物质,二十二碳六烯酸转变为神经保护素,及由二十二碳六烯酸转变的D族resolvin,及由二十碳五烯酸转变的E族resolvin8,9。

对脂质介质3,6的认识及关于多不饱和脂肪酸和新生血管性年龄相关的黄斑退行性改变的流行病学数据,提示二十碳五烯酸,二十二碳六烯酸及二十碳四烯酸在活体实验中能调节视网膜血管闭塞及新生血管形成3。

因此,我们测试了适当的摄入欧米伽-3多不饱和脂肪酸或欧米伽-6多不饱和脂肪酸是否能改变视网膜血管发生。

我们同时也利用遗传模型测试了多不饱和脂肪酸的作用,这个转基因小鼠模型过度C.elegansfat-1基因,并将欧米伽-6多不饱和脂肪酸转变为欧米伽-3多不饱和脂肪酸,以提高组织中欧米伽-3多不饱和脂肪酸的浓度水平10。

 

图1:

提高欧米伽-3多不饱和脂肪酸浓度水平可使小鼠血管闭塞和视网膜新生血管形成减少。

喂养欧米伽-3多不饱和脂肪酸或欧米伽-6多不饱和脂肪酸饮食的小鼠氧诱导视网膜病后行视网膜组织包埋显微镜检查。

(a)对生后17天的喂养欧米伽-6多不饱和脂肪酸和欧米伽-3多不饱和脂肪酸饮食小鼠的视网膜血管进行异凝集素B4-异硫氰酸荧光素染色以显示血管闭塞和新生血管形成(w-6,n=14,w-3,n=27)(scalebar,1mm)。

欧米伽-3多不饱和脂肪酸和欧米伽-6多不饱和脂肪酸饮食小鼠生后17天(b)血管闭塞及(c)新生血管形成。

(d)生后17天野生株(WT)与Fat-1小鼠视网膜血管闭塞和新生血管形成(scalebar,1mm)。

fat-1小鼠与对照组(野生株,n=20;Fat-1,n=16)相比(e)血管闭塞及(f)新生血管形成。

(g,h)喂养欧米伽-6多不饱和脂肪酸或欧米伽-3多不饱和脂肪酸小鼠生后第7到12天暴露于75%氧气后,即生后12天,13天,15天,17天小鼠视网膜包埋组织中血管形成区域所占百分比。

(g)Fat-1小鼠或它们的对照组(h),每组n=8–20,P≤0.001,P≤0.0001,NS,不明显。

 

  为了研究氧诱导的视网膜病,我们给分别实验小鼠喂养日本或西方的完全等热量的食物,食物中含有2%的欧米伽-3多不饱和脂肪酸(二十二碳六烯酸及二十碳五烯酸)或欧米伽-6多不饱和脂肪酸(二十碳四烯酸)(网上补充表1)。

我们同时检测了Fat-1转基因小鼠食用欧米伽-6多不饱和脂肪酸后视网膜病的情况(网上补充表2)。

     

  母乳中脂质含量反应了母亲饮食中脂质的情况9,11。

我们发现小鼠视网膜脂质组成反应了小鼠(及小鼠母亲)饮食中摄入脂质的情况。

通过欧米伽-3多不饱和脂肪酸饮食或fat-1基因的表达(P≤0.005),生后母乳喂养的小鼠生后17天的视网膜中所有形式的欧米伽-3多不饱和脂肪酸(包括二十碳五烯酸(EPA)及二十二碳五烯醇(DPA)-w-3,及二十二碳六烯酸(DHA))浓度水平均有提高。

喂养欧米伽-3多不饱和脂肪酸组与欧米伽-6多不饱和脂肪酸组相比,视网膜中欧米伽-6多不饱和脂肪酸(二十碳四烯酸,二十二碳四烯酸(DTA)及二十二碳五烯醇(DPA)-w-6)含量较低,并且Fat-1转基因小鼠也比野生株小鼠含量低(P≤0.005)。

通过饮食增加欧米伽-3多不饱和脂肪酸或通过fat-1基因表达均可导致总欧米伽-6/欧米伽-3多不饱和脂肪酸比率下降大于50%(表1)。

 

  我们发现视网膜中低欧米伽-6/欧米伽-3多不饱和脂肪酸比率可以预防病理性新生血管形成。

生后17天的小鼠与小鼠欧米伽-6多不饱和脂肪酸饮食组与欧米伽-3多不饱和脂肪酸饮食组视网膜血管闭塞区/视网膜总面积分别为21.5±0.4%与13.7±0.5%,P≤0.0001(图1a,b)。

然而,欧米伽-3多不饱和脂肪酸饮食的生后17天的小鼠与欧米伽-6多不饱和脂肪酸饮食的生后17的小鼠相比可明显避免病理性新生血管形成,5.7±0.4%与9.0±0.6%P≤0.0001(图1a,c)。

图2:

欧米伽-3多不饱和脂肪酸衍生产物resolvinD1(RvD1),RvE1或神经保护素D1(NPD1)通过减少血管闭塞和新生血管形成而预防视网膜病。

(a)欧米伽-3多不饱和脂肪酸(二十碳五烯酸和二十二碳六烯酸)代谢产物生物合成途径。

w-22-羟基-PD1是NPD1的生物活性产物。

RvE2是E族二十碳五烯酸resolvins的生物活性产物。

(b,c)RvE2的液体层析MS-MS光谱(b)及欧米伽-3多不饱和脂肪酸饮食小鼠视网膜提取物o-22-羟基-PD1(c)。

(d)resolvinD1(RvD1),RvE1或神经保护素D1(NPD1)处理小鼠与对照组相比生后17天血管闭塞情况。

(e)生后5到8天腹腔内注射RvD1(n=14),RvE1(n=10)orNPD1(n=14)的小鼠与对照组(n=14)相比生后17天新生血管形成情况。

(f)由RvD1(n=7),RvE1(n=9),NPD1(n=7)或saline(n=6)处理后的生后第8天小鼠血管闭塞情况。

(g)左列,生后14天的喂养欧米伽-6多不饱和脂肪酸的氧诱导视网膜病小鼠的视网膜包埋体内皮细胞染色(红色)。

阳性集落刺激因子-1Csf1r(绿色)及ChemR23(红紫色),中间聚焦,收集图像(scalebar,50微米);白色表明三种染色的混合。

右列,阳性集落刺激因子-1Csf1r+细胞的4张图像提示焦平面(z=1.1微米,2.1微米,3.0微米和4.0微米)。

横断面红线表明Z与左列相关的相对深度#P≤0.05;**P≤0.0001。

 

  我们证实Fat-1转基因小鼠10能增加视网膜欧米伽-3多不饱和脂肪酸水平而抑制新生血管形成(表1)。

生后17天氧诱导视网膜病后,野生株小鼠由于缺乏fat-1转基因有范围更大的血管闭塞区/视网膜总面积(21.9±0.7%与11.9±0.5%)(P≤0.001)(图1d,e),但野生株比Fat-1小鼠视网膜包埋体内有更严重的视网膜新生血管形成(8.3±0.8%与4.3±0.7%)(图1d,f),因为Fat-1纯合子小鼠欧米伽-6/欧米伽-3多不饱和脂肪酸比率比前者降低(表1)。

 

  欧米伽-3多不饱和脂肪酸能保护生后17天小鼠不患视网膜病是由于增加了血管再生及并不减少组织内氧过多时氧诱导的血管损害。

不同实验小组暴露于75%氧气中24小时后并没有观察到血管损害有任何差别。

暴露于75%氧气中5天后,喂养欧米伽-3多不饱和脂肪酸或欧米伽-6多不饱和脂肪酸的生后12天小鼠,Fat-1转基因小鼠或对照组,没有观察到血管闭塞有明显不同(图1g,h)。

然而,从生后12天至13天开始喂养欧米伽-3多不饱和脂肪酸的小鼠比喂养欧米伽-6多不饱和脂肪酸的小鼠视网膜无血管区范围小。

这种减少一直维持到生后17天(图1g)。

在Fat-1转基因小鼠和对照组中同样观察到了相似的变化(图1h)。

 

  Resolvins(溶解相相互作用产物)与神经保护素是欧米伽-3多不饱和脂肪酸生物活性代谢产物,分别是由二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)衍生而来(图2a)。

它们首先在分析富含二十二碳六烯酸组织时被发现12。

它们参与调节血管发生的作用还没有被研究清楚12。

 

  在欧米伽-6多不饱和脂肪酸饮食小鼠视网膜中利用串联质谱分析(MS-MS)脂质层吸仪没有发现resolvins和神经保护素。

然而,在欧米伽-3多不饱和脂肪酸饮食小鼠视网膜中,我们发现了w-22-羟基-保护素D1(PD1)和resolvinE2(RvE2),这两种物质分别是神经保护素D1(NPD1)和resolvinE1(RvE1)的标志物(图2b,c,网上补充表3)13,14。

 

  没有补充欧米伽-3多不饱和脂肪酸饮食的小鼠腹膜内的resolvinD1(RvD1),RvE1或神经保护素D1(NPD1)浓度水平非常低(10纳克/天,补充欧米伽-3多不饱和脂肪酸的小鼠视网膜发现的剂量,补充表3),与对照组相比明显能够避免生后17天小鼠血管闭塞(P≤0.0001)(图2d)和新生血管形成P≤0.03)(图2e)。

 

  我们没有观察到生后6天的喂养欧米伽-3多不饱和脂肪酸和欧米伽-6多不饱和脂肪酸小鼠之间血管生成有任何区别,补充resolvinD1(RvD1),RvE1或神经保护素D1(NPD1)的小鼠(生后4到5天)与对照组之间有明显差别(网上补充图1)。

生后5到8天的喂养resolvinD1(RvD1),RvE1或神经保护素D1(NPD1)的小鼠与对照组相比,我们也没有观察到血管损害有明显差别(图2f)。

生后17天时,所有治疗组与对照组相比血管闭塞明显较少(图2d),这提示这些化合物能通过增加血管再生而不是通过预防血管损害而产生预防视网膜病的作用。

这些发现于我们喂养多不饱和脂肪酸的实验结果相同,提示欧米伽-3多不饱和脂肪酸预防视网膜新生血管形成的保护性作用部分是由具有生物活性的resolvinD1(RvD1),RvE1或神经保护素D1(NPD1)等物质介导的。

 

  我们接着研究了resolvinD1(RvD1),RvE1或神经保护素D1(NPD1)等物质介导欧米伽-3多不饱和脂肪酸预防视网膜新生血管形成作用的机制。

RvE1结合到受体ChemR23上时能阻断促炎症反应细胞因子的产生15,16。

我们在视网膜包埋体内定位了ChemR23到阳性集落刺激因子-1(Csf1r+)亚组小胶质细胞,这些细胞在形态上有别于固有的小胶质细胞。

这些细胞与视网膜血管紧密联系(图2g)。

我们没有在视网膜别处发现ChemR23。

这些发现与欧米伽-3多不饱和脂肪酸衍生的生物活性介质与小胶质细胞上的受体相互作用以减少促炎症反应细胞因子的产生的观点相同。

 

  我们随后检测了促炎症反应细胞因子肿瘤坏死因子(TNF)-a。

在其他系统,调节肿瘤坏死因子的产生可通过调节上皮细胞分裂周期影响血管生成17,18。

此外,缺乏肿瘤坏死因子(TNF)-a的小鼠氧诱导视网膜病发生较少19。

因此,我们假设欧米伽-3多不饱和脂肪酸和欧米伽-6多不饱和脂肪酸及它们的生物活性代谢产物部分是通过调节肿瘤坏死因子(TNF)-a的表达而产生作用的。

 

  与我们假设一直的是,我们发现欧米伽-3多不饱和脂肪酸饮食能抑制视网膜肿瘤坏死因子信使核糖核酸(TnfmRNA)的表达,这种信使编码肿瘤坏死因子(TNF)-a,与欧米伽-6多不饱和脂肪酸饮食小鼠相比氧过多(生后8天)及缺氧时(生后14天)表达约90%(P≤0.0001)(图3a)。

与欧米伽-6多不饱和脂肪酸饮食组相比,欧米伽-3多不饱和脂肪酸饮食组视网膜肿瘤坏死因子(TNF)-a蛋白水平受抑下降30%(P≤0.001)(图3a)。

与观察到的欧米伽-3多不饱和脂肪酸饮食组相同,对欧米伽-6多不饱和脂肪酸饮食组小鼠腹腔内注射分离肿瘤坏死因子(TNF)-a的(TNF)-a受体融合蛋白(依那西普),生后17天小鼠视网膜无血管区减少(P≤0.001)(图3b),病理性新生血管形成也减少(P≤0.05)(图3c)。

伴有受抑而不是消除的肿瘤坏死因子(TNF)-a(图3b)的欧米伽-3多不饱和脂肪酸饮食小鼠进行腹腔注射治疗后还将进一步减少血管闭塞(P≤0.001)及新生血管形成(P≤0.02)(图3b,c)。

在眼球内注射依那西普也观察到了相同等结果(网上补充图2)。

这些数据指明欧米伽-3多不饱和脂肪酸饮食组肿瘤坏死因子(TNF)-a浓度水平的部分降低似乎明显间接的促进了预防视网膜病的保护性作用。

 

  完全消除肿瘤坏死因子(TNF)-a与依那西普部分抑制肿瘤坏死因子(TNF)-a相比,减少视网膜新生血管形成和血管损害的作用更为明显。

与期望相同的是,喂养欧米伽-3多不饱和脂肪酸饮食的Tnf+/+野生株小鼠与喂养欧米伽-6多不饱和脂肪酸饮食的小鼠相比,能减少血管闭塞和新生血管形成而保护视网膜(P≤0.00001)(图3d,e)。

然而,两组饮食的生后17天的Tnf–/–小鼠有更明显但不平均的血管闭塞和新生血管形成减少。

在完全消除肿瘤坏死因子(TNF)-a的情况下,没有发现欧米伽-3多不饱和脂肪酸饮食小鼠具有预防视网膜病的作用(减少血管闭塞或新生血管形成),也没有发现欧米伽-6多不饱和脂肪酸饮食小鼠视网膜病发病率增加(图3d,e),这提示肿瘤坏死因子(TNF)-a在视网膜病疾病进程中有很重要的作用。

 

  我们随后寻找了视网膜中肿瘤坏死因子(TNF)-a的细胞来源。

尽管多种细胞可以产生肿瘤坏死因子(TNF)-a,但单核细胞-衍生细胞产生的肿瘤坏死因子(TNF)-a是主要来源20。

小胶质细胞,巨噬细胞及树状突细胞是影响视网膜脉管系统发展和修复的阳性集落刺激因子-1(Csf1r+)炎症细胞21,22。

为了确定视网膜病中是这些细胞还是上皮细胞产生了肿瘤坏死因子(TNF)-a,我们在欧米伽-6多不饱和脂肪酸饮食的小鼠视网膜包埋体内利用共聚焦显微镜对肿瘤坏死因子(TNF)-a,阳性集落刺激因子-1(Csf1r+)和血管上皮细胞进行了免疫组织化学的标记和定位(图3f)。

我们仅仅发现阳性集落刺激因子-1(Csf1r+)亚组细胞产生的肿瘤坏死因子(TNF)-a与视网膜脉管系统有关。

这暗示了在这样的实验条件下,肿瘤坏死因子(TNF)-a主要是来源于与血管接近的阳性集落刺激因子-1(Csf1r+)亚组巨噬细胞或小胶质细胞。

 

  单核细胞或巨噬细胞对肿瘤坏死因子Tnf基因表达的诱导主要是依靠上游启动子区,包括NF-kB脱氧核糖核酸DNA结合基序23。

利用NF-kB–荧光素酶(NF-kB-Luc)探针标记的小鼠24,我们发现欧米伽-6多不饱和脂肪酸饮食小鼠比欧米伽-3多不饱和脂肪酸饮食小鼠视网膜中NF-kB活性增加了约100%(P≤0.00001)(图3g)。

在视网膜包埋体内,我们发现与视网膜脉管系统相关的小胶质细胞亚组具有NF-kB转录活性(图3h),与ChemR23(图2g)及TNF-a(图3f)相似。

这些结果提示视网膜巨噬细胞或小胶质细胞亚组可能涉及视网膜血管发生,通过调节NF-kB诱导的肿瘤坏死因子(TNF)-a的产生部分的发挥作用。

 

  二十二碳六烯酸(DHA)和二十碳五烯酸(EPA)作用于培养基中阳性集落刺激因子-1(Csf1r+)小胶质细胞或巨噬细胞能抑制肿瘤坏死因子信使RNA(TnfmRNA)的产生(网上补充图3)。

此外,resolvinD1(RvD1),RvE1或神经保护素D1(NPD1)的代谢产物剂量依赖性地降低培养基中及其它炎症模型中的巨噬细胞的肿瘤坏死因子信使RNA(TnfmRNA)的表达15,25–27。

 

  总之,欧米伽-3及欧米伽-6多不饱和脂肪酸能显著影响视网膜血管生长和病理变化。

二十碳五烯酸,二十二碳六烯酸及生理浓度水平的生物活性产物(resolvinD1(RvD1),RvE1或神经保护素D1(NPD1))能通过增强血管损害后再生而减少病理性新生血管形成。

巨噬细胞或小胶质细胞是视网膜血管生长和修复的关键成分21,22。

增加饮食摄入欧米伽-6多不饱和脂肪酸(二十碳四烯酸)能增加视网膜小胶质细胞产生活性的肿瘤坏死因子(TNF)-a,而增加欧米伽-3多不饱和脂肪酸饮食(二十碳五烯酸EPA,二十二碳六烯酸DHA)却抑制肿瘤坏死因子(TNF)-a的产生。

这些血管发生方面的作用

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试认证 > 交规考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1