机电一体化英文论文范本模板.docx
《机电一体化英文论文范本模板.docx》由会员分享,可在线阅读,更多相关《机电一体化英文论文范本模板.docx(21页珍藏版)》请在冰豆网上搜索。
机电一体化英文论文范本模板
AninnovativedigitalmethodforthedynamicsimulationofDCelectromechanicalsystems
ChenChaoyinga,*,P.DiBarbab,ASavinib
aDepartmentofElectricalEngineering,TianjinUniversity,300072Tianjin,People’sRepublicofChina
bDepartmentofElectricalEngineering,UniversityofPavia,27100Pavia,Italy
Abstract
Inthispaper,aninnovativedigitalsimulationmethod,named`R—K-T'method,ispresented。
ThenewmethodologycombinesRunge±Kuttaandtrapezoidalmethodsandpossessestheadvantagesofbothofthem。
Theerrorsfeaturingtheproposedmethodareanalysedandtheircorrectionisworkedout.Asacasestudy,thecircuitmodelofasmallDCmotor,actingastheenginestarterofaroadvehicle,isconsidered;theproposedmethodologyisappliedtocarryoutthedynamicsimulationoftheelectromechanicaldevice.Theresultsareobtainedef®cientlyandwithagooddegreeofaccuracy;inparticular,thenumericaloscillationsaresuppressed.q1998ElsevierScienceLtd.Allrightsreserved。
Keywords:
Numericalmethods;Timeintegration;Dynamicsystems;Electromechanics;DCmotor
1。
Introduction
Severaldigitalmethods,suchasEuler,trapezoidal,Runge±Kuttaandlinearmultistepmethodsaregenerallyusedtocarryoutnumericalintegrationanddifferentiation。
TheEulermethodissimple,butwithlowaccuracy;itscutofferrorisO(h2),whereasthatofthetrapezoidalmethoddecreaseasO(h3).TheRunge±Kuttamethodhasrelativelyhighaccuracybutrequireslargeamountofcomputationalwork;finally,themultistepmethodhashighaccuracy,butitcannotbeself—started[1].Therefore,thetrapezoidalmethodfindswidespreadapplicationsintransientdigitalsimulations.However,inDCsystemsimulations,thetrapezoidalmethodoftenintroducesnumericaloscillationswithequalamplitudes,sothatitsapplicationinthiscaseiscritical.SincethebackwardEulermethodcanavoidsuchoscillations,intheliterature[2],adampedtrapezoidalmethodwasproposed;thismethodintroducesadampingfactorintothetrapezoidalmethodwhicheffectivelydecreasesthenumericaloscillationsbutatthesacrificeofaccuracy。
AfteranalysingtrapezoidalandRunge±Kuttamethodscarefully,thispaperpresentsaninnovativesimulationmethod,called`R-K—T’,whichcombinesRunge±Kuttaandtrapezoidalmethodsingeniously。
Theadvantagesofthenewmethodare:
theRunge±Kuttamethodcanbeexpressedbythecompanionmodeljustlikethetrapezoidalmethoddoes;thenumericaloscillationscanbeattenuatedefficiently。
Accordingtofrequencyspectrumanalysis,theerrorsofthemethodarecalculatedandcorrected。
ItmakesitpossibletosimulateDCsystemsaccuratelyandefficiently。
2.NumericaloscillationsoftrapezoidalmethodinDCsystems
ConsideringtheinductivecircuitshowninFig。
1(a)thegoverningequationis
wherecurrentiistheunknown.Usingthetrapezoidalmethodfortimeintegration,onecanget:
Wherehisthetimestepofcalculation。
Let
then
ThecompanionmodelofthatdepictedinFig.1(a)isshowninFig.1(b).FromEq。
(1)onecanalsoget:
Fig。
1。
Inductiveimpedance(a)anditscompanionmodels(b)and(c)。
where
ItscompanionmodelisshowninFig。
1(c).
Suppose,when
aDCcurrent¯owsthroughtheinductiveimpedance.FromEq。
(3)thevoltageresponseoftheinductivebranchcanbecalculatedas
Itcanbeseenthattheoscillationofvoltageisundepressed。
Otherwiseassume,whennˆk,thecurrentisswitchedoff,i。
e。
fromEq。
(3)onecanget:
thatis
Thevoltageresponseisalsoanundepressedoscillation。
ItcanbeprovedthatthebackwardEulermethodcanavoidsuchanoscillation。
Forinductiveimpedanceitgives:
Itcanbeseenthatun11isnotdependentonun,sothismakesitpossibletoavoidnumericaloscillationsbutgreatlyreducestheaccuracyofbackwardEulermethod。
Tosolvethiscontradiction,theliterature[2]proposesatrapezoidalmethodwithdamping.Forthedifferentialequation
itgives
FortheinductiveimpedanceshowninFig。
1itgives:
Whereaisthedampingfactor(0〈a<1)。
Thismethodturnsintothetrapezoidalonewhena=0,andbecomesthebackwardEulermethodwhena=1.FromEq。
(9),itcanbeseenthatthecoeficientofunis
sowhenthevoltageoscillationisproduced,itcanbedampedoutquickly。
Thebiggerthefactoris,themorequicklytheoscillationisreducedandtheloweraccuracycanbeobtainedbythismethod。
Besides,thefactorcanbeselectedonlyaccordingtoexperience:
itsoptimumvalueisdif®culttobedetermined.
3。
TheR—K-Tmethod
TheRunge±KuttamethodhashigheraccuracyandbetterstabilityinDCsystems,butitrequiresthecalculationofthevaluesofafunctionmanytimesduringasinglestep;itcannotbeexpressedbyacompanionmodellikethetrapezoidalmethod.IfonecancombinetheRunge±Kuttamethodandthetrapezoidalmethodtoformanewmethod,thenitwillpossesstheadvantagesofbothtwomethods。
Takethe3rdorderRunge±Kuttamethodforexample,todeducethenewmethod.Forthedifferentialequation
bythe3rdorderRunge±Kuttamethod,onehas[3]
Fortheinductiveimpedance,onehas:
where
FromEq.(10)itfollows
Where
isthevoltageatthemidpointofthestep,whichcanbefoundbysolvingtheequationsofthesystem。
Butwecalculateitbytrapezoidalmethod.Itcanbedoneintwodifferentways(A)and(B):
(A)Taketheaveragevaluesofunandun11andlet
Substitutingun11/2fromEq。
(14)intoEq.(13)Eq.(10)gives:
SubstitutingtheaboveformulaintoEq。
(10),onecanget:
where
Itisobviousthatthe3rdorderRunge±Kuttamethodwithun11/2substitutedbyEq.(14)maybeexpressedbythecompanionmodelshowninFig.1(b),asforthetrapezoidalmethod;theparametersofthemodelare:
Thedistinguishingfeatureofthismethodisthatthecoef®-cientsofun11andunarenotequal;theirratioAmaybeusedtoattenuatethenumericaloscillationwithequalamplitudesoftrapezoidalmethod.ItturnstothetrapezoidalmethodwhenR=0,i。
e.theformulaforpureinductancegivenbytrapezoidalmethod:
(B)Take
Usingthetrapezoidalmethod,onehas:
BysubstitutingEq。
(19)intoeq,(13),onecanget:
BysubstitutingtheaboveequationsintoEq。
(10),itfollows
Where
Formula(20)maybeexpressedbyacompanionmodelofinductiveimpedanceasFig。
1(b),where
Formula(20)hasalsothefunctionofattenuatingthenumericaloscillationslikeEq.(15),anditalsoturnstothetrapezoidalmethodforpureinductancewhenR=0.
Forthe4thorderRunge±Kuttamethod,itgives:
Similarlyonecanobtainthecompanionmodelforthe4thorderRunge±Kuttamethodasfollows[4]。
(A)Taking
onehas:
Where
ItscompanionmodelinFig.1(b)is
(B)Taking
onecanget
where
ItscompanionmodelforFig。
1(b)is:
Bothofthe4thordermodelsintroducedabovealsoturntotrapezoidalmethodforpureinductancewhenRˆ0.Thus,theRunge±Kuttamethodiscombinedwithtrapezoidalmethodtoformanew`R-K—T'method,whichexhibitstheadvantagesofthesetwomethods。
4.AnalysisandcalculationoferrorfortheR-K-Tmethod
Inareal-lifesystem,voltagesandcurrents,whateverwaveformstheymayhave,canbeanalyzedbythemethodoffrequencyspectrum。
Theerrorofsimulationcanbeanalyzedforeveryfrequencycomponent;thecomponentsarethenaddedtogetheraccordingtothetheoryofsuperpositiontoobtainthetotalerrors。
Letusassumethatcurrentandvoltageofacertainsystemelementare:
Wherewanyonefrequencycomponent.Letusrewritethe3rdR-K—Tmethod(20)asfollows:
SubstitutingEq。
(27)intoEq.(28),onecandeduce:
Fromtheformulaofinductiveimpedance,onehas
ThedifferenceofthetwosidesofEq.(29)representstheerrorofR-K-Tmethodforfrequencycomponent,sothattheerrorfunctioncanbede®nedas:
Iftheexcitingsourcescontainanumberoffrequencycomponents,e(v)shouldbecomputedforeveryfrequencycomponentandaddedtogether。
Thesummationofallthee(v)givesthetotalerrorfunctionofthe3rdorderR-K—Tmethod.
5.CorrectionoferrorfortheR—K—Tmethod
FromEq。
(29)itisclearthatthereisunbalanceintheformulaoftheR-K—Tmethodforangularfrequency;itisduetothemethoditselfandnotrelatedtotheexcitingsources。
IfonewouldmatchthetwosidesofEq.(29)byaddingsomeitems,thenitcouldgivetheaccurateresultforfrequencycomponent.Letv0bethemainangularfrequencyoftheexcitingsource,inordertoconductaccuratecalculationforv0,itisnecessarytotransformEq。
(29)asfollows:
ThecoeficientsofthetwosidesofEq.(32)areequalw=w0。
Itmeansthatitgivesaccurateresultsforw=w0.
RestoringEq。
(32),onecandeduce:
where
Eq。
(33)istheformulaoftheR—K—Tmethodaftercorrection.Iftheexcitingsourceofthesystemhasasinglefrequencyv0,thencorrectioncanbemadeforthisfrequency.Ifthesystemhasamultifrequencyexcitingsource,thencorrectionmaybemadeforoneofthedominantlowerfrequencywhichhashigheramplitude。
6。
Numericalresults
Tochecktheaccuracyofthemethodpresented,thecircuitshowninFig。
2hasbeenconsidered.Itsparametersare:
Theaccurateexpressionofcurrentiis:
ThetestcircuitshowninFig。
2hasbeensolvedbyeachofthemodelsstatedabovewithtimesteph=0.1ms,aswellasbymeansofformula(34)givingamoreaccurateresult。
Ineachcaseerrorisdefinedasthemaximumabsolute
Fig.3.Errorcurvesforeachmodel(T:
cycle)(seeTable1).
Fig.4.Errorcurvesforeachmodel(T:
cycle)(seeTable1).
Fig。
5.Errorcurvesforeachmodel(T:
cycle)(seeTable1).
Fig。
6.Errorcurvesforeachmodel(T:
cycle)(seeTable1)。
Fig。
7.Errorcurvesforeachmodel(T:
cy