机电一体化英文论文范本模板.docx

上传人:b****3 文档编号:4048655 上传时间:2022-11-27 格式:DOCX 页数:21 大小:995.88KB
下载 相关 举报
机电一体化英文论文范本模板.docx_第1页
第1页 / 共21页
机电一体化英文论文范本模板.docx_第2页
第2页 / 共21页
机电一体化英文论文范本模板.docx_第3页
第3页 / 共21页
机电一体化英文论文范本模板.docx_第4页
第4页 / 共21页
机电一体化英文论文范本模板.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

机电一体化英文论文范本模板.docx

《机电一体化英文论文范本模板.docx》由会员分享,可在线阅读,更多相关《机电一体化英文论文范本模板.docx(21页珍藏版)》请在冰豆网上搜索。

机电一体化英文论文范本模板.docx

机电一体化英文论文范本模板

AninnovativedigitalmethodforthedynamicsimulationofDCelectromechanicalsystems

ChenChaoyinga,*,P.DiBarbab,ASavinib

aDepartmentofElectricalEngineering,TianjinUniversity,300072Tianjin,People’sRepublicofChina

bDepartmentofElectricalEngineering,UniversityofPavia,27100Pavia,Italy

Abstract

Inthispaper,aninnovativedigitalsimulationmethod,named`R—K-T'method,ispresented。

ThenewmethodologycombinesRunge±Kuttaandtrapezoidalmethodsandpossessestheadvantagesofbothofthem。

Theerrorsfeaturingtheproposedmethodareanalysedandtheircorrectionisworkedout.Asacasestudy,thecircuitmodelofasmallDCmotor,actingastheenginestarterofaroadvehicle,isconsidered;theproposedmethodologyisappliedtocarryoutthedynamicsimulationoftheelectromechanicaldevice.Theresultsareobtainedef®cientlyandwithagooddegreeofaccuracy;inparticular,thenumericaloscillationsaresuppressed.q1998ElsevierScienceLtd.Allrightsreserved。

Keywords:

Numericalmethods;Timeintegration;Dynamicsystems;Electromechanics;DCmotor

1。

Introduction

Severaldigitalmethods,suchasEuler,trapezoidal,Runge±Kuttaandlinearmultistepmethodsaregenerallyusedtocarryoutnumericalintegrationanddifferentiation。

TheEulermethodissimple,butwithlowaccuracy;itscutofferrorisO(h2),whereasthatofthetrapezoidalmethoddecreaseasO(h3).TheRunge±Kuttamethodhasrelativelyhighaccuracybutrequireslargeamountofcomputationalwork;finally,themultistepmethodhashighaccuracy,butitcannotbeself—started[1].Therefore,thetrapezoidalmethodfindswidespreadapplicationsintransientdigitalsimulations.However,inDCsystemsimulations,thetrapezoidalmethodoftenintroducesnumericaloscillationswithequalamplitudes,sothatitsapplicationinthiscaseiscritical.SincethebackwardEulermethodcanavoidsuchoscillations,intheliterature[2],adampedtrapezoidalmethodwasproposed;thismethodintroducesadampingfactorintothetrapezoidalmethodwhicheffectivelydecreasesthenumericaloscillationsbutatthesacrificeofaccuracy。

AfteranalysingtrapezoidalandRunge±Kuttamethodscarefully,thispaperpresentsaninnovativesimulationmethod,called`R-K—T’,whichcombinesRunge±Kuttaandtrapezoidalmethodsingeniously。

Theadvantagesofthenewmethodare:

theRunge±Kuttamethodcanbeexpressedbythecompanionmodeljustlikethetrapezoidalmethoddoes;thenumericaloscillationscanbeattenuatedefficiently。

Accordingtofrequencyspectrumanalysis,theerrorsofthemethodarecalculatedandcorrected。

ItmakesitpossibletosimulateDCsystemsaccuratelyandefficiently。

2.NumericaloscillationsoftrapezoidalmethodinDCsystems

ConsideringtheinductivecircuitshowninFig。

1(a)thegoverningequationis

wherecurrentiistheunknown.Usingthetrapezoidalmethodfortimeintegration,onecanget:

Wherehisthetimestepofcalculation。

Let

then

ThecompanionmodelofthatdepictedinFig.1(a)isshowninFig.1(b).FromEq。

(1)onecanalsoget:

Fig。

1。

Inductiveimpedance(a)anditscompanionmodels(b)and(c)。

where

ItscompanionmodelisshowninFig。

1(c).

Suppose,when

aDCcurrent¯owsthroughtheinductiveimpedance.FromEq。

(3)thevoltageresponseoftheinductivebranchcanbecalculatedas

Itcanbeseenthattheoscillationofvoltageisundepressed。

Otherwiseassume,whennˆk,thecurrentisswitchedoff,i。

e。

fromEq。

(3)onecanget:

thatis

Thevoltageresponseisalsoanundepressedoscillation。

ItcanbeprovedthatthebackwardEulermethodcanavoidsuchanoscillation。

Forinductiveimpedanceitgives:

Itcanbeseenthatun11isnotdependentonun,sothismakesitpossibletoavoidnumericaloscillationsbutgreatlyreducestheaccuracyofbackwardEulermethod。

Tosolvethiscontradiction,theliterature[2]proposesatrapezoidalmethodwithdamping.Forthedifferentialequation

itgives

FortheinductiveimpedanceshowninFig。

1itgives:

Whereaisthedampingfactor(0〈a<1)。

Thismethodturnsintothetrapezoidalonewhena=0,andbecomesthebackwardEulermethodwhena=1.FromEq。

(9),itcanbeseenthatthecoeficientofunis

sowhenthevoltageoscillationisproduced,itcanbedampedoutquickly。

Thebiggerthefactoris,themorequicklytheoscillationisreducedandtheloweraccuracycanbeobtainedbythismethod。

Besides,thefactorcanbeselectedonlyaccordingtoexperience:

itsoptimumvalueisdif®culttobedetermined.

3。

TheR—K-Tmethod

TheRunge±KuttamethodhashigheraccuracyandbetterstabilityinDCsystems,butitrequiresthecalculationofthevaluesofafunctionmanytimesduringasinglestep;itcannotbeexpressedbyacompanionmodellikethetrapezoidalmethod.IfonecancombinetheRunge±Kuttamethodandthetrapezoidalmethodtoformanewmethod,thenitwillpossesstheadvantagesofbothtwomethods。

Takethe3rdorderRunge±Kuttamethodforexample,todeducethenewmethod.Forthedifferentialequation

bythe3rdorderRunge±Kuttamethod,onehas[3]

Fortheinductiveimpedance,onehas:

where

FromEq.(10)itfollows

Where

isthevoltageatthemidpointofthestep,whichcanbefoundbysolvingtheequationsofthesystem。

Butwecalculateitbytrapezoidalmethod.Itcanbedoneintwodifferentways(A)and(B):

(A)Taketheaveragevaluesofunandun11andlet

Substitutingun11/2fromEq。

(14)intoEq.(13)Eq.(10)gives:

SubstitutingtheaboveformulaintoEq。

(10),onecanget:

where

Itisobviousthatthe3rdorderRunge±Kuttamethodwithun11/2substitutedbyEq.(14)maybeexpressedbythecompanionmodelshowninFig.1(b),asforthetrapezoidalmethod;theparametersofthemodelare:

Thedistinguishingfeatureofthismethodisthatthecoef®-cientsofun11andunarenotequal;theirratioAmaybeusedtoattenuatethenumericaloscillationwithequalamplitudesoftrapezoidalmethod.ItturnstothetrapezoidalmethodwhenR=0,i。

e.theformulaforpureinductancegivenbytrapezoidalmethod:

(B)Take

Usingthetrapezoidalmethod,onehas:

BysubstitutingEq。

(19)intoeq,(13),onecanget:

BysubstitutingtheaboveequationsintoEq。

(10),itfollows

Where

Formula(20)maybeexpressedbyacompanionmodelofinductiveimpedanceasFig。

1(b),where

Formula(20)hasalsothefunctionofattenuatingthenumericaloscillationslikeEq.(15),anditalsoturnstothetrapezoidalmethodforpureinductancewhenR=0.

Forthe4thorderRunge±Kuttamethod,itgives:

Similarlyonecanobtainthecompanionmodelforthe4thorderRunge±Kuttamethodasfollows[4]。

(A)Taking

onehas:

Where

ItscompanionmodelinFig.1(b)is

(B)Taking

onecanget

where

ItscompanionmodelforFig。

1(b)is:

Bothofthe4thordermodelsintroducedabovealsoturntotrapezoidalmethodforpureinductancewhenRˆ0.Thus,theRunge±Kuttamethodiscombinedwithtrapezoidalmethodtoformanew`R-K—T'method,whichexhibitstheadvantagesofthesetwomethods。

4.AnalysisandcalculationoferrorfortheR-K-Tmethod

Inareal-lifesystem,voltagesandcurrents,whateverwaveformstheymayhave,canbeanalyzedbythemethodoffrequencyspectrum。

Theerrorofsimulationcanbeanalyzedforeveryfrequencycomponent;thecomponentsarethenaddedtogetheraccordingtothetheoryofsuperpositiontoobtainthetotalerrors。

Letusassumethatcurrentandvoltageofacertainsystemelementare:

Wherewanyonefrequencycomponent.Letusrewritethe3rdR-K—Tmethod(20)asfollows:

SubstitutingEq。

(27)intoEq.(28),onecandeduce:

Fromtheformulaofinductiveimpedance,onehas

ThedifferenceofthetwosidesofEq.(29)representstheerrorofR-K-Tmethodforfrequencycomponent,sothattheerrorfunctioncanbede®nedas:

Iftheexcitingsourcescontainanumberoffrequencycomponents,e(v)shouldbecomputedforeveryfrequencycomponentandaddedtogether。

Thesummationofallthee(v)givesthetotalerrorfunctionofthe3rdorderR-K—Tmethod.

5.CorrectionoferrorfortheR—K—Tmethod

FromEq。

(29)itisclearthatthereisunbalanceintheformulaoftheR-K—Tmethodforangularfrequency;itisduetothemethoditselfandnotrelatedtotheexcitingsources。

IfonewouldmatchthetwosidesofEq.(29)byaddingsomeitems,thenitcouldgivetheaccurateresultforfrequencycomponent.Letv0bethemainangularfrequencyoftheexcitingsource,inordertoconductaccuratecalculationforv0,itisnecessarytotransformEq。

(29)asfollows:

ThecoeficientsofthetwosidesofEq.(32)areequalw=w0。

Itmeansthatitgivesaccurateresultsforw=w0.

RestoringEq。

(32),onecandeduce:

where

Eq。

(33)istheformulaoftheR—K—Tmethodaftercorrection.Iftheexcitingsourceofthesystemhasasinglefrequencyv0,thencorrectioncanbemadeforthisfrequency.Ifthesystemhasamultifrequencyexcitingsource,thencorrectionmaybemadeforoneofthedominantlowerfrequencywhichhashigheramplitude。

6。

Numericalresults

Tochecktheaccuracyofthemethodpresented,thecircuitshowninFig。

2hasbeenconsidered.Itsparametersare:

Theaccurateexpressionofcurrentiis:

ThetestcircuitshowninFig。

2hasbeensolvedbyeachofthemodelsstatedabovewithtimesteph=0.1ms,aswellasbymeansofformula(34)givingamoreaccurateresult。

Ineachcaseerrorisdefinedasthemaximumabsolute

Fig.3.Errorcurvesforeachmodel(T:

cycle)(seeTable1).

Fig.4.Errorcurvesforeachmodel(T:

cycle)(seeTable1).

Fig。

5.Errorcurvesforeachmodel(T:

cycle)(seeTable1).

Fig。

6.Errorcurvesforeachmodel(T:

cycle)(seeTable1)。

Fig。

7.Errorcurvesforeachmodel(T:

cy

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 解决方案

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1