行测数量关系习题.docx
《行测数量关系习题.docx》由会员分享,可在线阅读,更多相关《行测数量关系习题.docx(20页珍藏版)》请在冰豆网上搜索。
行测数量关系习题
2012年公务员考试行测数量关系习题
(1)
【例题】一只游轮从甲港顺流而下到乙港,马上又逆水返回甲港,共用8小时,顺水每小时比逆水每小时多行12千米,前4小时比后4小时多行30千米。
甲、乙两港相距多少千米?
A.72B.60C.55D.48
【例题】小许骑自行车出发24分钟后,小李开车去追,在距出发地8千米追上小许,然后开车返回出发地,返回后又立刻再次去追小许,追上时恰好离出发地16千米。
小李开车每小时行多少千米?
A.20B.30C.40D.50
【例题】一辆长12米的汽车以每小时36千米的速度由甲站开往乙站,上午10点整,在距乙站3000米外迎面遇到一个行人,1秒钟后汽车超过这个行人。
汽车到达乙站休息10分钟后返回甲站。
汽车于何时追上这个行人?
A.10点22分30秒B。
10点25分C.10点30分D.10点32分30秒
【例题】甲、乙两个工程队同时抢修一段距离相等的公路,开工12天后,两队完成的工作量正好等于甲队的总工作量。
开工20天后,乙完成了任务,甲队还需再修300米才完成任务。
两段公路的总长度是多少米?
A.2400B.2000C.1800D.1500
【例题】甲、乙二人从A、B两地同时出发相向而行,甲每分钟行80米,乙每分钟行60米,出发一段时间后,二人在距中点120米处相遇,如果甲出发后在途中某地停留一会儿,二人还将在距中点120米处相遇。
问甲在途中停留了多少分钟?
A.7B.8C.9D.10
【解析】C。
前4小时有顺水行驶,也有逆水行驶,后4个小时全为逆水行驶。
顺水行驶了30÷12=2.5小时,逆水行驶了8-2.5=5.5小时,则甲、乙两港相距12×2.5÷(5.5-2.5)×5.5=55千米。
【解析】C。
汽车的速度是汽车速度的(16+8)÷(16-8)=3倍,则小李第一次追上小许用了24÷(3-1)=12分钟,故小李开车的速度为8÷0.2=40千米/时。
【解析】B。
行人的速度为12÷1-10=2米/秒,汽车遇到行人后用3000÷10=300秒到达乙站,从乙站出发后用[3000+(300+600)×2]÷(10-2)=600秒,(300+600+600)÷60=25分,故汽车于10点25分追上此人。
【解析】C。
乙队每天修公路的,则开工12天后甲完成了全部工作量的
所以甲每天修公路的
20天后甲还剩下
故两段公路的总长度为300÷×2=1800米。
【解析】A。
两次的相遇点在中点的两侧,所以两次相遇点的距离为240米。
第一次相遇甲比乙多走240米,用时240÷80=3分钟,第二次相遇,甲比第一次少走3分钟,但乙要比甲多走240米,用时240÷60=4分钟,说明甲停留了3+4=7分钟。
2012年公务员考试行测数量关系习题
(2)
【例题】1.02,4.12,8.6,15.24,()。
A.22.72 B.27.96 C.23.96 D.26.72
【例题】l00,212,248,339,428,()。
A.551 B.177 C.606 D.324
【例题】0,1,1/4,1/2,(),5/64
A.1/8 B.1/6 C.3/16 D.3/8
【例题】2219,555,139,35,()
A.-9 B.-74 C.5 D.9
【例题】28,-7,27,21,25,-63,(),189,13
A.22 B.21 C.24 D.-26
【解析】D。
整数部分与小数部分分别构成两组数列。
【解析】B。
将每一项看成三个独立的数字,1×0=0,2×1=2,2×4=8,3×3=9,4×2=8,即前两个数字相乘等于第三个数字,选项中符合这一规律的只有B项,1×7=7。
【解析】C。
原数列可转化为
分子递推和数列,分母构成递推和数列,则空缺项为
本题正确答案为C。
【解析】D。
本题为递推数列,前一项加1除以4得到后一项,即(2219+l)÷4=555,(555+l)÷4=139,(139+1)÷4=35,空缺项应为(35+1)÷4=9,答案为D。
【解析】B。
本题为隔项分组数列。
2012年公务员考试行测数量关系习题(3)
【例题】任写一个六位数,把它的个位数字(不等于0)拿到这个数最左边一位数字的左边得到一个新的六位数,再与原数相加,下面四个数可能正确的是()
A.172536B.568741C.620708D.845267
【例题】小陈从家去体育馆参加比赛,先以每分钟50米的速度走了4分钟,发现这样走下,就要迟到6分钟,后来他改变速度,每分钟走65米,结果提前3分钟到达,问小陈家离体育馆多少米?
A.2500 B.2350 C.2200 D.2150
【例题】马立国每天早晨练习长跑都是从足球场跑到湖边,然后再返回来。
跑去的时候先是一段上坡路,然后就是下坡路。
上坡路马立国每分跑120米,下坡路每分跑150米。
去时一共跑了16分钟,返回时跑了15.5分钟。
则马立国从足球场向湖边跑的时候,上坡路长多少米?
A.2100 B.1800 C.1500 D.1200
【例题】从1,2,3,……,12中最多能选出几个数,使得在选出的数中,每一个数都不是另一个数的2倍?
A.7 B.8 C.9 D.10
【例题】小赵和小李是两位竞走运动员,小赵从甲地出发,小李同时从乙地出发,相向而行,在两地之间往返练习。
第一次相遇地点距甲地1.4千米,第二次相遇地点距乙地0.6千米。
当他们两人第四次相遇时,地点距甲地有多远?
A2.6千米 B.2.4千米 C.1.8千米 D.1.5千米
【解析】C。
新的六位数应可被11整除,故应选择620708。
【解析】D。
距离为50×[(50×6+65×3)÷(65-50)+4+6]=2150米。
【解析】D。
假设去时全是上坡,返回全是下坡,往返共用16+15.5=31.5分钟,把下坡时间算1份,上坡时间则是150÷120=1.25份,故下坡时间是31.5(÷1+1.25)=14份,全长14×150=2100米。
在假设去时全是下坡路,可得上坡路长(150×16-2100)÷(150-120)×120=1200米。
【解析】B。
将1—12分成如下6组:
1,2,4,8;3,6,12;5,10;7;9;11。
易知,每组中相邻的数有2倍关系,不同组中的数不会出现2倍关系,故最多选出2+2+1+1+1+1=8个数。
【解析】A。
甲、乙两地相距1.4×3-0.6=3.6千米,第四次相遇时,两人共走了7个全程,则小赵共走了1.4×7=9.8千米,9.8÷3.6=2……2.6千米,故地点距甲地2.6千米。
2012年公务员考试行测数量关系习题(4)
【例题】任写一个六位数,把它的个位数字(不等于0)拿到这个数最左边一位数字的左边得到一个新的六位数,再与原数相加,下面四个数可能正确的是()
A.172536 B.568741 C.620708 D.845267
【例题】小陈从家去体育馆参加比赛,先以每分钟50米的速度走了4分钟,发现这样走下,就要迟到6分钟,后来他改变速度,每分钟走65米,结果提前3分钟到达,问小陈家离体育馆多少米?
A.2500 B.2350 C.2200 D.2150
【例题】马立国每天早晨练习长跑都是从足球场跑到湖边,然后再返回来。
跑去的时候先是一段上坡路,然后就是下坡路。
上坡路马立国每分跑120米,下坡路每分跑150米。
去时一共跑了16分钟,返回时跑了15.5分钟。
则马立国从足球场向湖边跑的时候,上坡路长多少米?
A.2100 B.1800 C.1500 D.1200
【例题】从1,2,3,……,12中最多能选出几个数,使得在选出的数中,每一个数都不是另一个数的2倍?
A.7 B.8 C.9 D.10
【例题】小赵和小李是两位竞走运动员,小赵从甲地出发,小李同时从乙地出发,相向而行,在两地之间往返练习。
第一次相遇地点距甲地1.4千米,第二次相遇地点距乙地0.6千米。
当他们两人第四次相遇时,地点距甲地有多远?
A2.6千米 B.2.4千米 C.1.8千米 D.1.5千米
【解析】C。
新的六位数应可被11整除,故应选择620708。
【解析】D。
距离为50×[(50×6+65×3)÷(65-50)+4+6]=2150米。
【解析】D。
假设去时全是上坡,返回全是下坡,往返共用16+15.5=31.5分钟,把下坡时间算1份,上坡时间则是150÷120=1.25份,故下坡时间是31.5(÷1+1.25)=14份,全长14×150=2100米。
在假设去时全是下坡路,可得上坡路长(150×16-2100)÷(150-120)×120=1200米。
【解析】B。
将1—12分成如下6组:
1,2,4,8;3,6,12;5,10;7;9;11。
易知,每组中相邻的数有2倍关系,不同组中的数不会出现2倍关系,故最多选出2+2+1+1+1+1=8个数。
【解析】A。
甲、乙两地相距1.4×3-0.6=3.6千米,第四次相遇时,两人共走了7个全程,则小赵共走了1.4×7=9.8千米,9.8÷3.6=2……2.6千米,故地点距甲地2.6千米。
2012年公务员考试行测数量关系习题(5)
【例题】甲、乙两种含金样品熔成合金,如甲的重量是乙的一半,得到含金68%的合金;如甲的重量是乙的3.5倍,得到含金
的合金。
则乙的含金百分数为多少?
A.72% B.64% C.60% D.56%
【例题】甲、乙、丙三队要完成A,B两项工程,B工程工作量比A工程的工作量多1/4,甲、乙、丙三队单独完成A工程所需时间分别是20天、24天、30天。
为了同时完成这两项工程,先派甲队做A工程,乙、丙两队共同做B工程,经过几天后,又调丙队与甲队共同完成A工程,那么,丙队甲队合做了多少天?
A.18 B.15 C.10 D.3
【例题】有六只水果箱,每箱里放的是同一种水果,其中只有一箱放的是香蕉,其余都是苹果和梨。
已知所放水果的重量分别是1,3,12,21,17,35千克,且苹果总共的重量是梨的5倍,求香蕉有多少千克?
A.3 B.21 C.17 D.35
【例题】已知猫跑5步的路程与狗跑3步的路程相同,猫跑7步的路程与兔跑5步的路程相同。
而猫跑3步的时间与狗跑5步的时间相同,猫跑5步的时间与兔跑7步的时间相同。
猫、狗、兔沿着周长为300米的圆形跑道,同时同向同地出发,问当它们出发后第一次相遇时狗跑了多少路程?
A.8437.5米 B.23437.5米 C.16537.5米 D.25337.5米
【例题】一次知识竞赛,共3道题,每个题满分6分。
给分时只能给出自然数0—6分。
如果参加竞赛的人三道题的得分的乘积都是36分,并且任意两人三道题的得分不完全相同,那么最多有多少人参加竞赛?
A.24 B.20 C.18 D.12
【解析】A。
解析:
设甲的含金百分数为x,乙的含金百分数为y,可列方程x+2y=(1+2)×68%,3.5x+y=(1+3.5)×
解得y=72%。
【解析】D。
解析:
三队完成这项工程一共用了
18天,乙队一直在做B工程,一共做了
则B工程剩下的
为丙做的,故丙队与乙队合做了
天,与甲队合做了18-15=3天。
【解析】C。
解析:
六箱水果的总重量为1+3+12+21+17+35=89,因为苹果是梨的5倍,所以这两种水果的重量应为6的倍数,经验证,只有香蕉为17千克时,苹果和梨的总重量为72千克可以被6整除。
【解析】B。
解析:
猫和狗的速度比为
猫和兔的速度比为
可得猫、狗和兔的速度比为225:
625:
441。
猫和狗第一次相遇的时间为300÷(625-225)=3/4;猫和兔第一次相遇的时间为300÷(441-225)=25/18,可得猫、狗和兔第一次相遇的时间为3/4和25/18的最小公倍数75/2,故相遇时狗跑了625×75/2=23437.5米。
【解析】D。
解析:
36=1×6×6=2×3×6=3×3×4,三道题得1,6,6分有3种可能,三道题得2,3,6分有6中可能,三道题得3,3,4分有3种可能。
故最多有3+6+3=12人。
2012年公务员考试行测数量关系习题(6)
【例题】某小学五年级同学分成69个小组,每组3人,去参加植树劳动。
在这些小组中,只有1名男同学的共有15个小组,至少有2名女同学的共有36个小组,有3名男同学的小组与有3名女同学的小组同样多。
问这所小学五年级共有男同学多少名?
A.102 B.136 C.144 D.158
【例题】某人上午8点要上班,可是发现家里的闹钟停在了6点10分,他上足发条但忘了对表就急急忙忙的上班去了,到公司一看还提前了10分钟。
中午12点下班后,回到家一看,闹钟才11点整,假定此人上班、下班在路上用的时间相同,那么他家的闹钟停了多少分钟?
A.100 B.90 C.80 D.70
【例题】小刚骑自行车从8路汽车起点出发,沿8路车的行驶路线前进。
当他骑了1650米时,一辆8路公共汽车从起点站出发,每分钟行驶450米。
这辆汽车在行驶过程中每行5分钟停靠一站,停靠时间为1分钟。
已知小刚骑车的速度是汽车行驶速度的,这辆汽车出发后多长时间追上小刚?
A.15分钟 B.16分钟 C.17分钟 D.18分钟
【例题】三河村与县城相距18千米。
王秘书从三河村委去县城办事。
他走1.5千米时,通讯员小张发现王秘书忘了带东西,于是立即追赶。
小张追上小王秘书后,马上返回村委,这时王秘书忘了带东西,于是立即追赶。
小张追上王秘书后,马上返回村委,这时王秘书也刚到县城。
已知小张比王秘书每小时多走1千米,王秘书和小张的速度各是多少?
A.4千米/时 B.5千米/时 C.5.5千米/时 D.6千米/时
【例题】在棱长为12厘米的正方体的面的中心挖洞,并通到对面。
洞口是边长为3厘米的正方形。
它现在的表面积是多?
A.846平方厘米 B.986平方厘米 C.1134平方厘米 D.1324平方厘米
【解析】A。
有1名男生2名女生的小组有15个,则有3名女生的小组有36-15=21个,所以有3名男生的小组也有21个,只有1名女生的小组有69-15-21-21=12个,故男生一共有15+12×2+21×3=102名。
【解析】C。
由题意知:
6时10分+闹钟停的时间=7时50分;11时+闹钟停的时间=12时+下班后路上走的时间,所以闹钟停的时间+上班时间=7时50分-6时10分=100分钟,闹钟停的时间上班时间=12时-11时=60分,故闹钟停的时间为(100+60)÷2=80分钟。
【解析】C。
如果不休息的话汽车要1650÷(450-450×)=11分钟,11÷5=2……1,则汽车在追上小刚前休息了2分钟,而这两分钟内,小刚又走了450××2=600米,汽车又要用600÷(450-450×)=4分钟,故一共用了11+4+2=17分钟。
【解析】C。
王秘书的速度为(18-1.5)÷(1.5÷1×2)=5.5千米/时。
【解析】C。
表面积=6×12×12-6×3×3+6×3×4×[(12-3)÷2]=1134平方厘米。
2012年公务员考试行测数量关系习题(7)
【例题】7,14,10,11,14,9,(),()
A.19,8 B.18,9 C.17,8 D.16,7
【例题】97,95,92,87,()
A.81 B.79 C.74 D.66
【例题】1/43/10()2/5
A.23/50 B.17/40 C.11/30 D.7/20
【例题】1089,2178,3267,()
A.9810 B.9801 C.9180 D.9081
【例题】5,15,10,215,()
A.-205 B.-115 C.-225 D.-230
【解析】A。
交叉数列,其中奇数项、偶数项均为二级等差数列,所以奇数项括号内为19,两两做差得到3、4、5,偶数项括号内位8。
【点评】本题中两个括号、总项数为8项都是多重数列的重要特征。
【解析】B。
前项减去后项得到2、3、5,下一项为8,故原数列空缺项为B。
【点评】本题数列容易看出变化幅度不大,故做差尝试。
做差后得到2、3、5,这是非常重要的数列,下一项可以接7(质数数列),也可以接8(递推和数列)。
考生应当思维充分发散开,不要局限于某一个特定数列。
【解析】D。
对原数列直接进行通分,得到5/20、6/20、()、8/20,不难看出空缺项为7/20。
【点评】这个数列已知项只有3项,此时往往规律比较简单,同时分母又明显适合通分。
【解析】B。
不难看出,每个数都是1089的倍数,因此空缺项必然为1089的倍数,根据四个选项都在9000多,所以答案应是1089的9倍,直接计算可知答案为B。
【点评】本题较之前的数字推理题新颖之处在于其中有省略号,也即所求项为数列中的第几项是未知的。
而这种题目,因项的位置未知,则规律往往可以写成一个通项,换言之,规律往往是简单的,能够通用的,例如为某个数的倍数,或者为某个周期循环规律等情况。
【解析】B。
递推数列,第一项的平方减去第二项等于第三项,即52-15=10,152-10=215,102-215=115。
【点评】本题是此次5道数字推理题中最难的一题,其难度体现在递推过程中的主体规律平方不是紧邻的前项,而是更前项,从而递推规律隐蔽。
其启发特征源自四个选项都是负数。
2012年公务员考试行测数量关系习题(8)
【例题】2,3,5,7,( )
A.8 B.9 C.11 D.12
【例题】12,14,20,38( )
A.46 B.38 C.64 D.92
【例题】6,7,8,13,15,21,( ),36
A.27 B.28 C.31 D.35
【例题】74,38,18,10,4,( )
A.2 B.1 C.4 D.3
【例题】11,12,12,81,13,28,( ),42,15,( )
A.15,55 B.14,60 C.14,55 D.15,60
【解析】C。
分析题干可得此数列的规律:
此数列后一项与前一项的差依次为1,2,2,可见1×2=2,而下一个差值应该为2×2=4,所以下一项应为7+4=11。
【解析】D。
通过分析可以看出,此数列除以2后为6,7,10,19后一项与前一项的差分别为1、3、9,即3的N-1次方,所以此数列第四项与第三项的差,应该为9×3=27,得19+27=46,所以题干中第四项应为46×2=92。
【解析】B。
观察可得,此数列从第四项开始,该项数值都等于前三项和前两项的和,如13=6+7,21=8+13,所以可得第七项应该为第四和第五项之和,即13+15=28。
【解析】D。
将原数列除以2得37、19、9、5、2,可见38=37+1,18=19-1,10=9+1,4=5-1,则下一项应该为2+1=3,所以选D。
【解析】B。
该数列的第一、三、五、九项分别为11、12、13、15,所以第七项应该为14;而14×2=28,14×3=42,所以下一项应该为15×4=60,故选B。
2012年公务员考试行测数量关系习题(9)
【例题】一个长10分米、宽8分米、高6分米的长方体表面刷满了绿色,李师傅把它全部分割成棱长为1分米的正方体。
然后把没有绿色的部分都要刷上绿色。
要刷的面积有多大?
A.2880平方分米
B.2504平方分米
C.2424平方分米
D.376平方分米
【例题】有一项工程,甲、乙、丙三个工程队每天轮做。
原计划按甲、乙、丙次序轮做,恰好用整数天完成;如果按乙、丙、甲次序轮做,比原计划多用1/2天完成;如果按丙、甲、乙次序轮做,也比原计划多用1/2天完成。
已知甲单独做用10天完成,且三个工程队的工作效率各不相同,那么这项工程由甲、乙、丙三队合作要多少天可以完成?
【例题】2006年某人连续打工24天,共赚得190元(日工资10元,星期六半天工资5元,星期日休息无工资)。
已知他打工是从1月下旬的某一天开始的,这个月的1日恰好是星期日,这人打工结束的那一天是2月()日
A.2月6日
B.2月14日
C.2月18日
D.2月21日
【例题】5点整开始,当秒针第一次与分针成90度角时,秒针与时针之间的角度是()度
【例题】星期天聪聪和妈妈去书店买书,聪聪用自己存款的一半买了一本数学书,后来妈妈又给他5元,他又用其中比一半多0.4元的钱买了外语书,结果还剩7.2元,那么他未买数学书前共有多少元钱?
()
A.32
B.28.6
C..24.2
D.20.4
【解析】B。
原立方体的表面积为10×8×2+10×6×2+8×6×2=376平方分米,分割后所有下立方体的面积为1×1×6×(10×8×6)=2880平方分米,故增加了2880-376=2504平方分米。
【解析】D。
按甲、乙、丙次序轮做,只有当轮到甲结束时,第二、第三个条件才成立。
第一种情况的次序为甲乙丙甲乙丙……甲乙丙甲,第二种情况的次序为乙丙甲乙丙甲……乙、丙甲乙1/2丙,第三种情况的次序为丙甲乙丙甲乙……丙甲乙丙1/2甲。
所以甲=丙+1/2甲=乙+1/2丙,解得甲:
乙:
丙=4:
3:
2,故甲、乙、丙三人合作的工作效率为1/10÷4×(4+3+2)=9/40,故三队合作要1÷9/40=4(4/9)天可以完成。
【解析】D。
每7天工资为5×10+5=55元,一共有24÷7=3周……3天,而3周的工资为3×55=165元,所以剩下的3天中赚了190-165=25元,则他应该在周四开始打工。
由于他从1月下旬某一天开始的,所以这一天应该为1月26日,故他在2月18日结束。
【解析】C。
秒针每秒钟走360÷60=6度,分针每秒钟走360÷3600=0.1度,所以从5点整开始再过90÷(6-0.1)=
秒,秒针第一次与分针成90度角。
此时秒针与时针所成的角度为
【解析】D。
原来有[(7.2+0.4)×2-5]×2=20.4元。
2012年公务员考试行测数量关系习题(10)
【例题】2,3,5,7,()
A.8 B.9 C.11 D.12
【例题】12,14,20,38()
A.46 B.38 C.64 D.92
【例题】6,7,8,13,15,21,(),36
A.27 B.28 C.31 D.35
【例题】74,38,18,10,4,()
A.2 B.1 C.4 D.3
【例题】11,12,12,81,13,28,(),42,15,()
A.15,55 B.14,